
How can we Teach Workload Modeling

in CS Systems Classes?

Cristina L. Abad
Escuela Superior Politécnica del Litoral (ESPOL)

Guayaquil, Ecuador

cabadr@espol.edu.ec

ABSTRACT

In Computer Science curriculum guidelines, topics related to
Performance Engineering have typically been listed as small,
elective components, if at all. Even less has been said about
how and when to teach workload modeling. In this paper, I
discuss how Systems courses are a good place to include this
topic, including suggestions on how to do so that are rooted
in personal experience, existing literature and examples from
course programs found online. The ideas presented in this
paper were first presented as an invited talk at the TeaPACS
2024 workshop, and the paper was written post-workshop,
so the feedback and discussions of the TeaPACS speakers
and attendees have been incorporated into it.

1. INTRODUCTION

Workload modeling is crucial in how we design and eval-
uate systems, as incorrect assumptions about the workload
can lead to sub-optimal designs and evaluations [15]. Under-
standing the characteristics of workloads allows for more ac-
curate performance predictions, better resource allocation,
and ultimately, more efficient and e↵ective systems. Thus,
teaching students to use representative workloads1 is essen-
tial for them to develop reliable systems that perform well
under actual operating conditions.

We must teach Computer Science (CS) students the sig-
nificance of workloads in system design and evaluation; but
this is not a trivial task. Students must learn which fea-
tures of the workload to model and how to do so e↵ectively.
They need to understand whether to model features inde-
pendently or in combination, and when to use full real work-
loads (traces) or synthetic ones. This requires a deep under-
standing of both the system being modeled and the nature of
the workloads it will encounter. While many of these things
can be learnt post-graduation, any on-the-job learning can
be hindered if the student has no previous understanding of
the impact of workloads on software, and of the complexities
involved in workload characterization and modeling.

We argue that teaching about workloads is best done in
Systems courses, where students already learn about sys-
tem design and performance. Integrating workload model-
ing into these courses can provide students with practical,

1In this paper, I use the term workloads to refer to the
collective aspects of workload characterization, modeling,
and synthetic generation.

Copyright is held by author/owner(s).

hands-on experience and a deeper understanding of how sys-
tems operate under di↵erent conditions.

Some questions that I address in this paper are: Do cur-
rent CS curriculum guidelines reflect the importance of the
topic of workloads? (Section 2); Where in the CS curricu-
lum can we teach workload modeling? (Section 3); What
are the benefits of teaching workload modeling in CS sys-
tems courses? (Section 4); How can we teach workload
modeling in CS systems courses? (Section 5). For this
analysis, I draw on my own experience having taught dif-
ferent systems classes at some point in my career (Com-
puter Communications, Computer Networking, Operating
Systems, Distributed Systems, Cloud Computing, Advanced
Operating Systems, Big Data Architectures), and comple-
ment this with information from CS education papers pub-
lished at past “International Workshop on Education and
Practice of Performance Engineering (WEPPE)” and “Teach-
ing Performance and Analysis of Computer Systems (Tea-
PACS)” workshops as well as some examples taken from the
websites of CS courses in the world.

2. DO CS CURRICULUM GUIDELINES

REFLECT THE IMPORTANCE OF THE

TOPIC OF WORKLOADS?

The most important Computer Science curriculum guide-
lines are the ones periodically updated by the Joint Task
Force on Computing Curricula of the ACM and IEEE Com-
puter Society, with the Association for the Advancement of
Artificial Intelligence (AAAI) joining in for the 2023 version.
Their recently released CS2023 [13] mentions workloads in
several knowledge units within the Architecture and Orga-
nization (AR) and Systems Fundamentals (SF) knowledge
areas (area and subtopic indicated in parenthesis):

1. AI algorithms for workload analysis (AR-Heterogeneity:
Heterogeneous Architectures).

2. Energy footprint of data centers at various workloads
(AR-SEP: Sustainability Issues).

3. Workloads and representative benchmarks, and meth-
ods of collecting and analyzing performance figures of
merit (SF-Evaluation: Performance Evaluation).

4. Understanding layered systems, workloads, and plat-
forms, their implications for performance, and the chal-
lenges they represent for evaluation (SF-Evaluation:
Performance Evaluation).

58 Performance Evaluation Review, Vol. 52, No. 2, September 2024



This is a significant improvement from the CC2020 guide-
lines [9], which did not include the term workload in the
report. This was a result of the adoption of a competency-
based model instead of the body of knowledge approach of
the CS2013 [11] and CS2023 versions. While focusing on
competencies has several benefits, the CC2020 guidelines
failed to include many important topics, as they were pre-
sumably implicit in achieving the recommended competen-
cies. For example, for the case of workloads, one would
expect them to be discussed when preparing students to
achieve competencies like “[m]easure the performance of two
application instances running on separate virtual machines
at a local engineering company and determine the e↵ect of
performance isolation.”

Another important curriculum e↵ort is that of the NSF/
IEEE-TCPP Curriculum Initiative on Parallel and Distributed
Computing (PDC), which has been meeting periodically since
2010. The current version of their guidelines, version 2.0-
beta [10], mentions workloads in two advanced (not core)
learning outcomes, both within the Performance metrics
topic (within the memory and network bandwidth subtopics):

1. Be able to explain significance of memory bandwidth
with respect to multi-core access, and di↵erent con-
tending workloads, and challenge of measuring.

2. Know how network bandwidth is specified and ex-
plain the limitations of the metric for predicting per-
formance, given di↵erent workloads that communicate
with di↵erent contending patterns.

From this analysis, we can observe that existing curricu-
lum guidelines for Computer Science do not mention work-
load modeling as a core topic, though the importance of
understanding how workloads a↵ect computer systems is in-
cluded in some guidelines to a greater or lesser degree. In all
cases, the topic is addressed in the Systems knowledge area
(or the very-related architecture and networking areas).

3. WHERE IN THE CS CURRICULUM CAN

WE TEACH WORKLOAD MODELING?

In theory, we could have specialized standalone courses
dedicated to workload characterization and modeling. How-
ever, this approach is unlikely to be adopted, as such a
course would be too specialized for most undergraduate and
graduate programs.

The subject could also be taught as part of an applied
statistics or probability course. This approach would be
(in the opinion of this author) quite interesting, but unlikely
to be adopted given that there are many other more tradi-
tional applications that can be considered in those courses.

When software engineering courses focus on testing,
the issue of benchmarks and the workloads that come with
them are usually discussed in class. Another natural fit for
the topic of workloads are computer simulation courses.
However, both software testing and computer simulation
courses are electives and most students don’t take them.

A class of (elective) courses that has gained some popu-
larity with the advent of the DevOps philosophy are mon-
itoring courses. In a sense, monitoring is the basis of
workload characterization [4]. Furthermore, when monitor-
ing, the system must be under an artificial workload (active
monitoring) or real workload (passive monitoring), so such

a class could discuss not only how to characterize a work-
load, but how to model it and synthetically generate it. As
Calzarossa et al. [4] point out, these kinds of courses bridge
the gap between theory and practice as monitoring makes
it possible to see in action concepts taught in classes (e.g.,
Internet protocol stack, software systems).

When discussing when to teach workload modeling, two
other possibilities deserve a slightly longer discussion: per-
formance courses (Section 3.1), as these are the focus of
the TeaPACS community, and systems courses (Sections 4
and 5), which is the approach argued for in this paper.

3.1 Workload modeling in performance courses

Performance courses can vary significantly, but we can
broadly classify them into those focused on performance
evaluation (and benchmarking) and those focused on per-
formance modeling.

For courses focused on performance evaluation (and
benchmarking), workloads are essential and an important
percentage of the course would likely focus on them. For ex-
ample, Kounev presented a course on Systems Benchmark-
ing in his WEPPE 2021 Keynote [12], and highlighted that
benchmarks are characterized by their metrics, workloads,
and measurement methodology.

A second example of this type of course is “Topics in
Performance Evaluation” taught in the past by Prof. Dror
Feitelson2, which featured a course plan that concentrated
heavily on workloads, with 50% of the course plan dedi-
cated to this topic and subtopics (see Table 1), and covering
workload characterization, modeling and synthetic genera-
tion techniques.

Similarly, the course “Performance Evaluation and QoS”
taught in the past by Prof. Maria Carla Calzarossa3 also
concentrated heavily on workloads, including machine learn-
ing techniques that can be used for workload characteriza-
tion (see Table 2).

Courses on performance modeling (PM), on the other
hand, can be taught without a thorough discussion on work-
load modeling techniques, and inclusion of such topics or
not depends on the instructor’s approach. Prof. Vitto-
ria de Nitto Personè [7] analyzed 75 performance model-
ing courses and classified them into three groups, depending
on their instructional focus: General performance model-
ing, performance modeling for communication systems, and
performance modeling for software. Of these three groups,
she found that only the first one is somewhat homogeneous
in their content, usually focusing on probability, simulation
and stochastic processes. Her findings on the topics com-
monly covered in these courses show that the General PM
and PM for Software courses usually include workload char-
acterization in their discussions, though the specifics across
all subtopics vary significantly.

An example of a PM course is “Analytical Performance
Modeling” taught by Prof. Y.C. Tay, which uses systems
research papers to illustrate usefulness of di↵erent analytical
models [17], including in relation to workloads.

On the other hand, Dr. Giuliano Casale has a more hands-

2See: https://www.cs.huji.ac.il/course/2013/perf/
& https://www.cs.huji.ac.il/course/2013/perf/plan.
html
3See: https://peg.unipv.it/ImpiantiLS/presentazione.
html & https://peg.unipv.it/ImpiantiLS/programma.
html

Performance Evaluation Review, Vol. 52, No. 2, September 2024 59



Table 1: Course plan of course: Topics in Perfor-
mance Evaluation (Prof. Dror Feitelson, The He-
brew University of Jerusalem, 2013).
Topic Subtopic

Introduction
(6 hours)

Motivation and problems
The issues: techniques, metrics, and workloads
Using measurements, simulations, and analysis
Visual data representation
Di↵erent types of graphs
Avoiding misleading representation
Introduction to event-driven simulation

Queueing analysis
(8 hours)

Queues and queueing networks
Response time, utilization, and system dynamics
The M/M/1 queue
Little’s law
Operational laws and bottleneck analysis
Open vs. closed systems
Case studies:
Analysis of network router with bounded bu↵er
Compare two slow processors to one fast one
Queueing networks
Mean value analysis

Workloads
(14 hours)

Workload analysis and characterization
Summary statistics such as mean and median
Creating a variate from a distribution
Useful distributions
Parameter estimation techniques and goodness of fit
Comparing distributions using quantile-quantile plots
Heavy tails and long tails
Power laws and the Pareto distribution
Mass-count disparity and conditional expectation
Popularity and the Zipf distribution
Case study: load balancing
Oblivious balancing
Balancing based on workload characteristics
Feedback in workloads
The daily cycle of activity
User-based workload modeling
Self similarity
The Hurst parameter

Simulation
(12 hours)

Event-driven vs. time-driven simulation
Simulating the system in its steady state
Evaluating confidence intervals
Termination conditions and simulation length
Variance reduction
Case study: networking evaluation
The ns-2 simulator and its use
The PlanetLab infrastructure
Experimental design and analysis of variation
Case study: parallel job scheduling
Scheduling on parallel supercomputers
Backfilling
The e↵ect of inaccurate runtime estimates

The End
(2 hours)

Summary of exercises and simulations
Complementary approaches: measurement and experimentation

on approach in his Performance Engineering course [5], which
is at the intersection between performance engineering and
systems engineering, with a focus on cloud computing sys-
tems and measurement. In this course, some workload mod-
eling techniques are introduced (Markov chains) to describe
user workload patterns, and in a hands-on exercise, students
are asked to instantiate and size VMs and conduct bench-
marking and workload characterization experiments.

The approaches discussed in this section (e.g. teaching
workload modeling within a performance modeling course)
have the disadvantage that those courses are usually elec-
tives taken by few students. Particularly, the TeaPACS com-
munity has repeatedly discussed the problem that perfor-
mance modeling courses are decreasing in popularity (e.g.,
as observed by Dr. Casale [5]), so hoping that students will
learn about workload modeling in these unpopular courses is
not ideal. For this reason, in the next two sections I discuss
how these topics can be weaved into the content of systems
courses, which are typically required in a CS program.

Table 2: Course plan of course: Performance Evalu-
ation and QoS (Prof. Maria Carla Calzarossa, Uni-
versity of Pavia, 2010); translated from Italian.

Topic list

Introduction
Plants and services. Examples. Total Cost of Ownership. Quality of
service: dependability, usability, performance. Availability, reliabil-
ity, security. Service Level Agreement: characteristics and examples.
Performance evaluation and capacity planning activities: motivations
and phases. Critical issues: bottleneck. Load models and system
models.

Monitoring measures
Motivations and process. Why, what, where and how to measure.
Active and passive measurement tools. Intrusiveness and overhead.
Examples.

Workload
Definitions. Types of load, levels of detail, parameters. Quantitative
and qualitative parameters, measured and derived. Methodological
approach. Exploratory analysis: basic statistics, frequency distribu-
tions, percentiles, scatter plots and correlations. Web server log anal-
ysis. Statistical and dynamic properties of the workload. Parameter
scaling. Statistical techniques: clustering. Hierarchical agglomerative
algorithms: dendrogram. Hierarchical algorithms: k-means. Princi-
pal component analysis. Correspondence analysis. Linear and non-
linear regression methods. Examples of studies that require detailed
knowledge of the intensity of the workload.

Chapter 3 Lazowska et al. [14]
Fundamental Metrics and Laws: Measured and Derived Quantities.
Arrival Rate, Throughput, Utilization, Average Service Time. Uti-
lization Law. Average Number of Requests in the System. Average
Residence Time. Little’s Law. User-System Interactions: Response
Time Law. Visits and Total Service Time.

Chapter 4 Lazowska et al. [14]
Service centers. Queuing networks. Input parameters and perfor-
mance indices.

Chapter 6 Lazowska et al. [14]
Solution of open single-class models. Stationarity condition. Per-
formance indices for service center and system. Solution of closed
models: Mean Value Analysis.

Simulation
Simulation techniques: advantages and disadvantages compared to
analytical techniques. Events and simulated time. Types of simu-
lation: trace-driven, time-driven, event-driven. Time advancement
mechanisms: simulator clock. Event scheduling mechanisms: event
list. State variables. Counters and arrays. Exogenous variable: sam-
pling of empirical and theoretical statistical distributions. Inverse
transform method. Random number generators: reproducibility, in-
dependence, period. Endogenous variable: unconditional estimates.
Confidence intervals. Variance estimation methods: batch means,
repeated trials, regeneration.

4. SHOULD WE TEACH WORKLOAD

MODELING IN CS SYSTEMS COURSES?

Systems Fundamentals (SF) is one of the knowledge ar-
eas in the CS2023 [13] curriculum guidelines, and is de-
fined as those concepts at the core of the computer systems
courses like operating systems, parallel and distributed sys-
tems, communications networks, computer architecture and
organization and software engineering4. In the CS2023, the
SF and Architecture areas are the only place where work-
loads are mentioned. Furthermore, the SF area has two
core knowledge units related to performance: System Per-
formance and Performance Evaluation. In a way, the guide-
lines are already pointing to where the topic of workloads is
best discussed: Systems courses.

Systems courses are required in most CS programs, so
making sure we provide discussions, labs and exercises about
workloads (characterization and modeling) in these classes

4The author notes that the SF area did not include software
engineering in prior ACM/IEEE guidelines.

60 Performance Evaluation Review, Vol. 52, No. 2, September 2024



may be the only way to make sure students are exposed to
these concepts. In addition, doing so enables departments
to teach performance topics even if they have stopped teach-
ing Performance Modeling courses. The approach also fits
well with how performance practitioners (as a community)
have evolved in their approach to performance of computer
systems [5]. Finally, adding small modules on workloads in
the context of a more practical course can help motivate
students to take courses focused on PM in the future.

To some extent, this recommendation is a specific case
of what Serazzi already pointed out at TeaPACS 2021 [16]:
“To facilitate the dissemination of performance evaluation
concepts thus increasing the number of students interested
in this discipline, another action can be taken at the organi-
zational level. It consists of the integration of performance
evaluation concepts, with simple examples, in some popular
computer engineering courses. Very few lessons are needed
and an application-oriented approach should be adopted.”

5. HOW CAN WE TEACH WORKLOAD

MODELING IN CS SYSTEMS COURSES?

In this section, we discuss several ways (in bold) in which
workloads can be weaved into di↵erent systems courses.

In classical operating systems classes, algorithms used by
the OS like eviction policies and scheduling algorithms are
presented with pen-and-paper exercises (e.g., classical
caching eviction problems) in which toy workloads are used
to evaluate these algorithms. However, this treatment of
workloads is too superficial and does not help students un-
derstand workload models (other than very simple ones).

A much better approach would be to make workloads
a “first-class citizen” of the course (where appropriate);
for example, by: (1) adding a unit or subsection on work-
load modeling, (2) discussing thoroughly when applicable,
and (3) including code to test systems using di↵erent work-
loads. For an example, consider the book Operating Sys-
tems: Three Easy Pieces by Remzi and Andrea Arpaci-
Dusseau [2]. In this book, workload assumptions are pre-
sented in the first subsection of some chapters; non-toy work-
loads are discussed in examples; questions about how work-
loads a↵ect results are included for students to think about;
additional code is provided so that students can run simula-
tions with di↵erent workloads; and, more advanced workload
modeling is left to suggested readings.

When courses include a laboratory component, we can in-
clude experimentation with diverse workloads in one
or more guided labs; these labs can include workload
characterization or modeling components. Courses where
this approach fit well are Distributed Systems, Cloud Com-
puting, and Networking. For example, Casale [5] presented
a lab on cloud auto-scaling at TeaPACS 2023 in which work-
loads with di↵erent intensity are used to test the responsive-
ness of a cloud auto-scaler.

If the class does not include laboratory components, simi-
lar exercises can be assigned to students as homework. For
example, a homework where students simulate a networked
system, where students use specific workload models to sim-
ulate system load. This approach is frequently adopted in
networking and distributed systems classes; adding exter-
nal readings to the exercise can help provide more informa-
tion about the workload model being used and why, or—
preferably—a detailed section of the workload models and

how to tweak them (if appropriate) can be included in the
exercise description5.

Similar to the homework approach (and perhaps better
suited for in-depth coverage of workloads) is making the
use of di↵erent workload models in the final project of a
systems class. For an example, I describe an assignment
I used in the past when teaching an undergraduate Dis-
tributed Systems class, though the same assignment could
work for an Operating Systems class (concurrency topic,
caching topic). The students were asked to implement a
distributed, in-memory key-value store and a component of
their evaluation was the performance of their implementa-
tion. To evaluate the performance, we used both YCSB [6]
and KV-replay, a YCSB fork that we implemented to al-
low for trace replays [3]. YCSB comes with several prede-
fined workloads, including and independent reference model
implementation with Zipfian popularity for the requested
objects. KV-replay was used to replay real traces from
YouTube (for details on this workload, see our original publi-
cation [3]). We gave extra credit to the (correct) implemen-
tation with the top performance across several workloads.
Anecdotally, we found this approach got many students re-
ally interested in performance, with one even opting to pur-
sue it professionally.

In research paper-based graduate systems courses
where one or two papers are discussed in each session, the in-
structor can lead the discussion towards the workloads used
in the evaluation. This is the approach I use in the Advanced
Operating Systems class at ESPOL, where we hold weekly
paper discussions. Most sessions include explicit discussions
about the workloads used in the assigned reading, with me
posing questions like: Where the workloads used adequate
and thorough? Was any interesting workload characteriza-
tion presented? Did the authors use any workload models?
What are the limitations of the workload models that were
used? The course also has a final research project, and stu-
dents are expected to use adequate workloads (models or
traces) in their evaluations. In addition, I hold a similarly
structured weekly non-credit seminar for undergraduate stu-
dents interested in systems research, which is usually well
attended and liked.

For CS programs that include co-ops or similar indus-
try programs, an alternative is to have students evaluate
real systems for clients. For example, the CC2020 [9]
guidelines used a competency-based approach and included
the following competency for CS students in the Systems
Fundamentals area: “Measure the performance of two ap-
plication instances running on separate virtual machines at
a local engineering company and determine the e↵ect of per-
formance isolation.” However, a risk with this approach is
that the company could have uninteresting workloads.

In which systems classes should we include discussions
about workloads? Ideally, in all (or most) of them. Per-
formance issues and the related trade-o↵s are at the core
of many systems classes; for example, as highlighted in our
analysis of performance topics covered in Distributed Sys-
tems syllabi [1]. Whenever performance is discussed in sys-
tems classes, a discussion on how this performance is a↵ected
by di↵erent workloads and how this has important implica-

5For an example of such an approach in a Distributed Sys-
tems class, we refer the reader to a former exercise from
CMU’s DS class: https://www.andrew.cmu.edu/course/
15-446/applications/labs/proj2/proj2.pdf

Performance Evaluation Review, Vol. 52, No. 2, September 2024 61



tions in system evaluations is relevant. I quote Serazzi [16]
again, as he articulated this quite well at TeaPACS 2021:
“To facilitate the dissemination of performance evaluation
concepts thus increasing the number of students interested
in this discipline, another action can be taken at the organi-
zational level. It consists of the integration of performance
evaluation concepts, with simple examples, in some popular
computer engineering courses. Very few lessons are needed
and an application-oriented approach should be adopted.”

6. CONCLUSIONS

While the importance of workloads (characterization, gen-
eration, modeling) is obvious to Performance educators, our
discussion at TeaPACS highlighted that other CS educators
may not be as aware of how crucial it is to teach these topics
to CS students. At a minimum, we want students to under-
stand how the workloads used in system evaluations a↵ect
the results (garbage-in, garbage-out [8]), and that under-
standing expected workloads is key for system design and
evaluation. One way to ensure these messages get to them,
is to include workloads in our systems classes. This paper
presented some examples of how to do this that we hope
other CS educators will find useful. Workloads are typically
students’ last concern in their projects, so giving them ex-
plicit credit for using proper workloads (models or traces) in
their evaluations is a way to ensure that they don’t fail to do
so; extra-credit for the best performant system has worked
for me in my classes as competition can spark their inter-
est. Finally—and tying to the TeaPACS discussion on data-
driven approaches—workload modeling is inherently data-
driven, and as such, the inclusion of this topic can help stu-
dents get motivated in Performance Engineering, as many
of them are already working on acquiring data science skills
that they can naturally use for workload modeling.

7. ACKNOWLEDGMENTS

I thank Vittoria De Nitto Personé and Y.C. Tay, organiz-
ers of the TeaPACS workshop series, for their commitment
in seeking to improve the state of performance education. I
also thank all other TeaPACS presenters and attendees, for
their insightful discussions that helped shape this paper.

8. REFERENCES

[1] C. Abad, A. Iosup, E. Boza, and E. Ortiz Holguin. An
analysis of distributed systems syllabi with a focus on
performance-related topics. In Companion of the
ACM/SPEC International Conference on
Performance Engineering (ICPE), 2021.

[2] R. Arpaci-Dusseau and A. Arpaci-Dusseau. Operating
Systems: Three Easy Pieces. Arpaci-Dusseau Books,
1.10 edition, November 2023.

[3] E. Boza, C. San-Lucas, C. Abad, and J. Viteri.
Benchmarking key-value stores via trace replay. In
IEEE International Conference on Cloud Engineering
(IC2E), 2017.

[4] M. C. Calzarossa, L. Massari, and D. Tessera.
Performance monitoring guidelines. In Companion of
the ACM/SPEC International Conference on
Performance Engineering (ICPE), 2021.

[5] G. Casale. Performance evaluation teaching in the age
of cloud computing. SIGMETRICS Performormance

Evaluation Review, 51(2), oct 2023.

[6] B. F. Cooper, A. Silberstein, E. Tam,
R. Ramakrishnan, and R. Sears. Benchmarking cloud
serving systems with YCSB. In 1st ACM symposium
on Cloud Computing (SoCC), 2010.

[7] V. de Nitto Personè. Teaching performance modeling
in the era of millennials, 2020. arXiv:2001.08949v1
[cs.CY].

[8] D. Feitelson. Workload Modeling for Computer
Systems Performance Evaluation. Cambridge
University Press, 2015.

[9] C. T. Force. Computing Curricula 2020: Paradigms
for Global Computing Education. ACM, 2020.

[10] N.-T. C. W. Group. NSF/IEEE-TCPP curriculum
initiative on parallel and distributed computing : Core
topics for undergraduates. Technical report, Center for
Parallel and Distributed Computing Curriculum
Development and Educational Resources (CDER),
2020. Version 2.0-beta.

[11] Joint Task Force on Computing Curricula, Association
for Computing Machinery (ACM) and IEEE
Computer Society. Computer Science Curricula 2013:
Curriculum Guidelines for Undergraduate Degree
Programs in Computer Science. ACM, 2013.

[12] S. Kounev. A new course on systems benchmarking -
for scientists and engineers. In Companion of the
ACM/SPEC International Conference on
Performance Engineering (ICPE), 2021.

[13] A. Kumar, R. Raj, S. Aly, M. Anderson, B. Becker,
R. Blumenthal, E. Eaton, S. Epstein, M. Goldweber,
P. Jalote, D. Lea, M. Oudshoorn, M. Pias, S. Reiser,
C. Servin, R. Simha, T. Winters, and Q. Xiang.
Computer Science Curricula 2023. ACM, 2024.

[14] E. Lazowska, J. Zahorjan, S. Graham, and K. Sevcik.
Quantitative system performance: Computer system
analysis using queueing network models. Prentice-Hall,
Inc., 1984.

[15] S. Mühlbauer, F. Sattler, C. Kaltenecker, J. Dorn,
S. Apel, and N. Siegmund. Analyzing the impact of
workloads on modeling the performance of
configurable software systems. In International
Conference on Software Engineering (ICSE), 2023.

[16] G. Serazzi. Updating the content of performance
analysis textbooks. SIGMETRICS Performormance
Evaluation Review, 49(2), jun 2021.

[17] Y. Tay. Lessons from teaching analytical performance
modeling. In Companion of the ACM/SPEC
International Conference on Performance Engineering
(ICPE), 2019.

62 Performance Evaluation Review, Vol. 52, No. 2, September 2024


