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Some terminology
• “RI” – real intelligence 

• Relying on knowledge and analytical skills to do things “by hand”
• Assumed white-box

• “AI” – artificial intelligence
• Relying on data and statistical methods to automatically learn 
• Assumed black-box 

• Performance Engineering 
• A systematic, quantitative approach to the design and development of 

software to meet performance requirements [1] 

• Toolbox 
• A collection of tools to be selected and used for various tasks

[1] Connie U. Smith - https://www.spe-ed.com/classic-site/speis.htm

https://www.spe-ed.com/classic-site/speis.htm


This talk is based on … 
• PE – Performance Engineering 

• MSc course on performance analysis, modelling, improvement [2]

• CPP/DPP – Concurrent/Distributed and Parallel Processing 
• BSc course on parallel computing

• PMMS – Programming multi- and many-core systems 
• MSc course on shared memory and GPGPU programming 

• A24 – A Programmer’s Guide to HPC
• Graduate course on HPC,from systems to application design to performance.

[2] Varbanescu et. al – “Performance Engineering for Graduate Students: a View from Amsterdam



Course structure

Lectures
Theoretical and empirical 

concepts.

Combine fundamental methods 
and tools with modern, state-of-

the art approaches.

Teaches students how to expand 
their knowledge.

Labs
Link theoretical aspects with 

processing and tools that 
facilitate their application in 

practice

Small-scale assignments, limited 
coding

Focus on performance analysis, 
modeling, and prediction 

Project
Experience performance 

engineering for a real case-study 
application. 

Understand the limitations and 
challenges of the provided 

methods and tools
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Assessment

Exam: 20-25%
Test theoretical knowledge.

Test the understand of 
methodological aspects of 
performance engineering.

Augmented with in-class quizzes 
to stimulate students’ interest in 

these aspects during lectures.

Assignments: 25-30%
Grade the ability of solving 

specific aspects of performance 
engineering. 

Reports worth more than 
coding/tools. 

Showcase the practical 
challenges of performance 

engineering.

Project: 50%
Assess the ability of students to 
plan, execute, and document a 

complete performance 
engineering project. 

Also include a communication 
aspect, with intermediate and 

final results.
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Agenda
• Terminology and setup 
• Building the toolbox 
• Practice makes perfect 
• Did it work? 
• Take home message
• Dreams for the future



Part 1: Building the toolbox



Systematic Performance Engineering 
1. Collect and analyse (user) performance requirements.
2. Understand current performance.
3. Assess feasibility of the requirements.
4. Assess suitable approaches to meet the requirements 

(including algorithm and/or system (co-)design).
5. Apply tuning and optimization.
6. Assess progress and iterate back to steps 3–5.
7. Analyse and document the process and result

Main goal: a student finishing the class must know how to execute this 
process on a given system for a given application.
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Lectures



Running example
Calculate the heat dissipation (2D stencil operation, iterative) in a 
metal cylinder. 



1. Performance requirements 
• Types of performance requirements

• Real-time performance 
• Best possible performance 
• N times faster than reference implementation 
• X % or more hardware utilization 

• Metrics for performance and beyond 
• Generic: speed-up, scalability, efficiency
• Application-specific metrics 

• How to define, measure, interpret, explain

Calculate heat dissipation for a 10K x 10K cylinder in 1ms.
15 ops per point x (10K)2 = 1.5GFLOP => Throughput = 1.5 / 0.001 = 1500 GFLOPS 



2. Current performance 
• Experimental setup 

• Collect/infer relevant use-scenarios 
• Input data included !

• Per scenario:
• Profile the code => identify hot-spots 
• Measure performance in detail => identify bottlenecks 

• Benchmarking 
• Methods and tools 

Current speed for a 10K x 10K cylinder is 1s => We need 1000x improvement! 



3. Can it be done?
• Feasibility analysis based on modeling. 

• Analytical modeling 
• Statistical/ML-based learning 
• Simulation 
• Benchmarking 

CPU peak performance = 100 GFLOPs << 1500 GFLOPs => CPU not feasible! 
GPU peak performance = 2000 GFLOPs > 1500 GFLOPs => GPU feasible … with 75% 
utilization! => maybe … 

Maybe 1500 GFLOPs is too much? 



4. How can it be done? 
• Select the methods and tools for tuning. 

• Identify feasible actions 
• Better hardware/OS/…  
• Tuning – parameters, compiler-options, etc. 
• Implementation – better constructs, more efficient data structures
• Restructuring / refactoring – better algorithms, methods, parallelization, …  

• Rank & select options in terms of gain using performance models

Code optimization: Apply SIMD => 2x ,  Improve caching => 1.5x, … 
Different algorithms: Handle boundary conditions, aggressive recalculation, … 
Better hardware: Use a GPU! => 20x 

Key challenge: accurate models!! 



5+6. Tuning & Evaluation
• Implement the selected tuning methods 

• Apply one action at a time 
• Re-evaluate after each step 

• Performance => “update” models 
• Tuning steps => “update” plan 

• Are you there yet? If not: continue. 

Mostly implementation, benchmarking, and model refinement. 
Reorder optimizations depending on current results. 



7. Analyze & document the result
• Document design options & choices 
• Document models and benchmarks 
• Reflect on the results

• Cost, effort, sustainability 

• Document future steps, and their requirements 
• Cost, effort

Selected algorithm A because … => see model! 
Used a GPU because the CPU was not feasible => see model! 
Further implementation to make … => see model! 



What’s in the toolbox: methods 

• Types of performance (1) 
• Metrics (1)
• Design an experimental setup 

(2,6) 
• Run measurement 

experiments (2,3)
• Benchmarking (2) 
• Microbenchmarking (2,3) 

Modeling  HW & SW (3,4) 
• Analytical 
• Statistical 
• Simulation 

• Performance improvement 
methods (5)

• Performance assessment (6)
• Documentation (7) 



What’s in the toolbox: systems and languages
• Systems 

• CPUs, GPUs, Distributed (super)computers 

• Benchmarking suites
• STREAM, uOps, OSACA, LLVM-MCA/iaca  

• (micro)benchmarking tools 
• LIKWID, PAPI, Perf

• Programming languages/models
• C/C++, CUDA, OpenCL/SyCL, MPI
• Others allowed, but not actively supported  



What’s in the toolbox: “actual” tools
• Roofline model and tools 

• Vtune, nsight, the roofline toolkit, … 

• Simulators 
• GEM5, AccelSim, 

• Measurement tools 
• LIKWID, PAPI, Perf, nvisia-smi, nsight, … 

• Optimization tools 
• Autotuning tools 
• Libraries! 
• Polyhedral model and experimental compilers 

• Various online resources, the Polly benchmark 



What’s in the toolbox – modelling
• Analytical modelling

• Roofline model & ECM model 
• Bottleneck analysis 
• Queuing theory 

• ML-based modelling 
• Data collection and management 
• Examples of basic statistics/ML 
• Complex DNN 

• Simulators & benchmarks 



Topics



Learning objectives 
1.Quantify (using the appropriate tools and methods) performance using the relevant metrics;
2.Use and compare modelling methods, and assess their usefulness
3.Classify and use performance prediction methods, and assess their usefulness 
4.Design an empirical performance analysis process for an application, analyse results, and 
recommend performance improvement solutions;
5.Design and use a suitable model for accurate performance prediction for a given 
application;
6.Apply and assess different optimization techniques to parallel and distributed codes;
7.Design, develop, apply, and assess a complete performance engineering process for a given 
application;
8.Use different performance engineering tools (e.g., profilers, microbenchmarks and 
benchmarks, performance counters libraries, etc.).



Part 2: Practice makes perfect 



Quizzes (examples later?)
• At least one per class 

• Focus on training curiosity and intuition 

• Graded for bonuses 
• And acting as a bridge between theory/lectures 

• Linked to exam questions 
• Direct application 



Assignments
1. The Roofline Model for a simple kernel 

• Applied for sequential code, parallel code, optimized/accelerated code 
• Demonstrate the model can assess the differences

2. Analytical Modeling and Microbenchmarking
• Design, calibrate, and evaluate analytical models 
• Design/reuse microbenchmarks for calibration 

3. Statistical Modeling
• Choose and use machine learning models
• Assess their cost and accuracy  

4. Performance Counters and Performance Patterns
• Learn how to collect and understand detailed performance data 
• Use performance patterns to diagnose and solve performance problems  
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Project
• Let’s redo that in real-world conditions.
• Examples 

• Optimize ADAM
• Optimize graph processing 
• Optimize EveOnline and LunarLockout 
• Optimize Wordle 
• Optimize stencil operations 

• Documentation and reflection – 60% of the grade
• This is a true discriminator!   



Part 3: Did it work? 



Results 



Feedback

• High grades across all 
categories.

• High praise for the 
course structure and 
interconnection 
between components.

• High workload students 
spend 20–50% more 
time than officially 
allocated.



Lessons learned
1. Performance Engineering is appealing when treated like a puzzle. 

• We appeal to students’ curiosity to understand why applications behave weirdly on different systems. 
2. Provide both methods and tools for each part of the course. 

• Students appreciate the theory much better when they can link it to concrete examples. 
3. Do not underestimate empirical analysis efforts, especially when experimental design 

is missing, and/or automation is not properly defined. 
• We spend time and provide many examples on how this should be done correctly and efficiently.

4. Projects stimulate creativity, and students should be allowed exploration time and 
space. 
• We provide no endline for our projects, and allow students to try different things

5. Stimulate critical thinking by reporting on both positive and negative results. 
• We grade the process and the actual insights, and not ultimate speed-up or high-accuracy; 

understanding why and how methods and tools work and fail is fundamental to such a course.
6. This is an intensive course for both teachers and students. 

• We offer a course that students can rely on and apply for their real-life performance engineering 
projects



Practical aspects - positive 
• Applications that work

• matrix multiplication
• histogram
• SpMV
• Graph processing 

• Systems that work 
• CPUs, GPUs, heterogeneous, distributed 

• Tools that *exist* 
• Many many many, and we keep updating them



Practical aspects – challenging*
• Lack of background 

• Math knowledge
• Statistics knowledge
• Programming skills 
• Data management 

• Lack of curiosity / goals / … ? 
• Difficult to select projects 

• Lack of big thinking 



Performance Education in a Data-Driven World
• Performance Engineering is a big data problem 

• Many systems 
• Many input datasets 
• Many metrics and data to collect 

• Performance Engineering with ML is exciting … 
• But still requires to explain why 
• Usually a starting point 
• Leads to interesting patterns 

• Collecting data and traces leads to very creative performance 
analysis & optimization methods  



Motivating students
• Provide a mix of theory + practice + real-world application
• Treat performance like a puzzle
• Do lots of hands-on things: quizzes, project, exercises, labs
• Provide a lot of examples and war stories
• Combine hardware (systems) with software (programming) and 

modelling (not-a-lot-of-math)
• Target metrics - ”fast”, “efficient”, “energy-saving” … 
• Target practical skills and cultivate appetite for theory



Take home message



Take home message

• Pro’s: 
• The toolbox approach exposes students to many methods and their 

implementation into tools 
• They practice on ”controlled” applications 
• They “apply” on a “real-world” project
• They choose how and when to use them
• They learn what is needed today for system-level performance modeling

• Con’s 
• “Demand-driven” - principles follow practice 
• Not a lot of math and not a lot of theory 

to-the-office



Take home message

• We were lucky to embed the course within a series of courses 
• Making puzzles was easy 

• We had an excellent set of TAs
• We spent a lot of time in quizzes and report reading and providing 

feedback
• We embraced machine learning from the very beginning 

• Students wanting to use it, can … 
• And find out it is non-trivial.

to-the-office



What next ?
• A general curriculum for performance engineering ? 

• A “compendium” of theory and practice ? 
• Keep up-to-date with models and tools 

• Expand to sustainability metrics ? 

• Expand to … 
• Computing continuum e
• Embedded/cyber-physical systems  
• Model-based (co-)design 


