
Combining “real” and “artificial”
intelligence for performance

engineering: a toolbox approach
Ana-Lucia Varbanescu

with some inputs from Stephen Swatman

Some terminology
• “RI” – real intelligence

• Relying on knowledge and analytical skills to do things “by hand”
• Assumed white-box

• “AI” – artificial intelligence
• Relying on data and statistical methods to automatically learn
• Assumed black-box

• Performance Engineering
• A systematic, quantitative approach to the design and development of

software to meet performance requirements [1]

• Toolbox
• A collection of tools to be selected and used for various tasks

[1] Connie U. Smith - https://www.spe-ed.com/classic-site/speis.htm

https://www.spe-ed.com/classic-site/speis.htm

This talk is based on …
• PE – Performance Engineering

• MSc course on performance analysis, modelling, improvement [2]

• CPP/DPP – Concurrent/Distributed and Parallel Processing
• BSc course on parallel computing

• PMMS – Programming multi- and many-core systems
• MSc course on shared memory and GPGPU programming

• A24 – A Programmer’s Guide to HPC
• Graduate course on HPC,from systems to application design to performance.

[2] Varbanescu et. al – “Performance Engineering for Graduate Students: a View from Amsterdam

Course structure

Lectures
Theoretical and empirical

concepts.

Combine fundamental methods
and tools with modern, state-of-

the art approaches.

Teaches students how to expand
their knowledge.

Labs
Link theoretical aspects with

processing and tools that
facilitate their application in

practice

Small-scale assignments, limited
coding

Focus on performance analysis,
modeling, and prediction

Project
Experience performance

engineering for a real case-study
application.

Understand the limitations and
challenges of the provided

methods and tools

Course structure

Lectures
Theoretical and empirical

concepts.

Combine fundamental methods
and tools with modern, state-of-

the art approaches.

Teaches students how to expand
their knowledge.

Labs
Link theoretical aspects with

processing and tools that
facilitate their application in

practice

Small-scale assignments, limited
coding

Focus on performance analysis,
modeling, and prediction

Project
Experience performance

engineering for a real case-study
application.

Understand the limitations and
challenges of the provided

methods and tools

Define the toolbox. Test the tools Use the tools

Assessment

Exam: 20-25%
Test theoretical knowledge.

Test the understand of
methodological aspects of
performance engineering.

Augmented with in-class quizzes
to stimulate students’ interest in

these aspects during lectures.

Assignments: 25-30%
Grade the ability of solving

specific aspects of performance
engineering.

Reports worth more than
coding/tools.

Showcase the practical
challenges of performance

engineering.

Project: 50%
Assess the ability of students to
plan, execute, and document a

complete performance
engineering project.

Also include a communication
aspect, with intermediate and

final results.

Assessment

Exam: 20-25%
Test theoretical knowledge.

Test the understand of
methodological aspects of
performance engineering.

Augmented with in-class quizzes
to stimulate students’ interest in

these aspects during lectures.

Assignments: 25-30%
Grade the ability of solving

specific aspects of performance
engineering.

Reports worth more than
coding/tools.

Showcase the practical
challenges of performance

engineering.

Project: 50%
Assess the ability of students to
plan, execute, and document a

complete performance
engineering project.

Also include a communication
aspect, with intermediate and

final results.

Understand the
methods

Demonstrate
skills with the tools

Use the entire
toolbox

Agenda
• Terminology and setup
• Building the toolbox
• Practice makes perfect
• Did it work?
• Take home message
• Dreams for the future

Part 1: Building the toolbox

Systematic Performance Engineering
1. Collect and analyse (user) performance requirements.
2. Understand current performance.
3. Assess feasibility of the requirements.
4. Assess suitable approaches to meet the requirements

(including algorithm and/or system (co-)design).
5. Apply tuning and optimization.
6. Assess progress and iterate back to steps 3–5.
7. Analyse and document the process and result

Main goal: a student finishing the class must know how to execute this
process on a given system for a given application.

Systematic Performance Engineering
1. Collect and analyse (user) performance requirements.
2. Understand current performance.
3. Assess feasibility of the requirements.
4. Assess suitable approaches to meet the requirements

(including algorithm and/or system (co-)design).
5. Apply tuning and optimization.
6. Assess progress and iterate back to steps 3–5.
7. Analyse and document the process and result

0

2

4

6

8

10

12

Refere
nce

ve
rsion1

ve
rsion2

Final

Predicted

Ultim
ate goal

Systematic Performance Engineering
1. Collect and analyse (user) performance requirements.
2. Understand current performance.
3. Assess feasibility of the requirements.
4. Assess suitable approaches to meet the requirements

(including algorithm and/or system (co-)design).
5. Apply tuning and optimization.
6. Assess progress and iterate back to steps 3–5.
7. Analyse and document the process and result

Project

Lectures

Running example
Calculate the heat dissipation (2D stencil operation, iterative) in a
metal cylinder.

1. Performance requirements
• Types of performance requirements

• Real-time performance
• Best possible performance
• N times faster than reference implementation
• X % or more hardware utilization

• Metrics for performance and beyond
• Generic: speed-up, scalability, efficiency
• Application-specific metrics

• How to define, measure, interpret, explain

Calculate heat dissipation for a 10K x 10K cylinder in 1ms.
15 ops per point x (10K)2 = 1.5GFLOP => Throughput = 1.5 / 0.001 = 1500 GFLOPS

2. Current performance
• Experimental setup

• Collect/infer relevant use-scenarios
• Input data included !

• Per scenario:
• Profile the code => identify hot-spots
• Measure performance in detail => identify bottlenecks

• Benchmarking
• Methods and tools

Current speed for a 10K x 10K cylinder is 1s => We need 1000x improvement!

3. Can it be done?
• Feasibility analysis based on modeling.

• Analytical modeling
• Statistical/ML-based learning
• Simulation
• Benchmarking

CPU peak performance = 100 GFLOPs << 1500 GFLOPs => CPU not feasible!
GPU peak performance = 2000 GFLOPs > 1500 GFLOPs => GPU feasible … with 75%
utilization! => maybe …

Maybe 1500 GFLOPs is too much?

4. How can it be done?
• Select the methods and tools for tuning.

• Identify feasible actions
• Better hardware/OS/…
• Tuning – parameters, compiler-options, etc.
• Implementation – better constructs, more efficient data structures
• Restructuring / refactoring – better algorithms, methods, parallelization, …

• Rank & select options in terms of gain using performance models

Code optimization: Apply SIMD => 2x , Improve caching => 1.5x, …
Different algorithms: Handle boundary conditions, aggressive recalculation, …
Better hardware: Use a GPU! => 20x

Key challenge: accurate models!!

5+6. Tuning & Evaluation
• Implement the selected tuning methods

• Apply one action at a time
• Re-evaluate after each step

• Performance => “update” models
• Tuning steps => “update” plan

• Are you there yet? If not: continue.

Mostly implementation, benchmarking, and model refinement.
Reorder optimizations depending on current results.

7. Analyze & document the result
• Document design options & choices
• Document models and benchmarks
• Reflect on the results

• Cost, effort, sustainability

• Document future steps, and their requirements
• Cost, effort

Selected algorithm A because … => see model!
Used a GPU because the CPU was not feasible => see model!
Further implementation to make … => see model!

What’s in the toolbox: methods

• Types of performance (1)
• Metrics (1)
• Design an experimental setup

(2,6)
• Run measurement

experiments (2,3)
• Benchmarking (2)
• Microbenchmarking (2,3)

Modeling HW & SW (3,4)
• Analytical
• Statistical
• Simulation

• Performance improvement
methods (5)

• Performance assessment (6)
• Documentation (7)

What’s in the toolbox: systems and languages
• Systems

• CPUs, GPUs, Distributed (super)computers

• Benchmarking suites
• STREAM, uOps, OSACA, LLVM-MCA/iaca

• (micro)benchmarking tools
• LIKWID, PAPI, Perf

• Programming languages/models
• C/C++, CUDA, OpenCL/SyCL, MPI
• Others allowed, but not actively supported

What’s in the toolbox: “actual” tools
• Roofline model and tools

• Vtune, nsight, the roofline toolkit, …

• Simulators
• GEM5, AccelSim,

• Measurement tools
• LIKWID, PAPI, Perf, nvisia-smi, nsight, …

• Optimization tools
• Autotuning tools
• Libraries!
• Polyhedral model and experimental compilers

• Various online resources, the Polly benchmark

What’s in the toolbox – modelling
• Analytical modelling

• Roofline model & ECM model
• Bottleneck analysis
• Queuing theory

• ML-based modelling
• Data collection and management
• Examples of basic statistics/ML
• Complex DNN

• Simulators & benchmarks

Topics

Learning objectives
1.Quantify (using the appropriate tools and methods) performance using the relevant metrics;
2.Use and compare modelling methods, and assess their usefulness
3.Classify and use performance prediction methods, and assess their usefulness
4.Design an empirical performance analysis process for an application, analyse results, and
recommend performance improvement solutions;
5.Design and use a suitable model for accurate performance prediction for a given
application;
6.Apply and assess different optimization techniques to parallel and distributed codes;
7.Design, develop, apply, and assess a complete performance engineering process for a given
application;
8.Use different performance engineering tools (e.g., profilers, microbenchmarks and
benchmarks, performance counters libraries, etc.).

Part 2: Practice makes perfect

Quizzes (examples later?)
• At least one per class

• Focus on training curiosity and intuition

• Graded for bonuses
• And acting as a bridge between theory/lectures

• Linked to exam questions
• Direct application

Assignments
1. The Roofline Model for a simple kernel

• Applied for sequential code, parallel code, optimized/accelerated code
• Demonstrate the model can assess the differences

2. Analytical Modeling and Microbenchmarking
• Design, calibrate, and evaluate analytical models
• Design/reuse microbenchmarks for calibration

3. Statistical Modeling
• Choose and use machine learning models
• Assess their cost and accuracy

4. Performance Counters and Performance Patterns
• Learn how to collect and understand detailed performance data
• Use performance patterns to diagnose and solve performance problems

Assignments
1. The Roofline Model for a simple kernel

• Applied for sequential code, parallel code, optimized/accelerated code
• Demonstrate the model can assess the differences

2. Analytical Modeling and Microbenchmarking
• Design, calibrate, and evaluate analytical models
• Design/reuse microbenchmarks for calibration

3. Statistical Modeling
• Choose and use machine learning models
• Assess their cost and accuracy

4. Performance Counters and Performance Patterns
• Learn how to collect and understand detailed performance data
• Use performance patterns to diagnose and solve performance problems

This is all in “sanitized” conditions.

Project
• Let’s redo that in real-world conditions.
• Examples

• Optimize ADAM
• Optimize graph processing
• Optimize EveOnline and LunarLockout
• Optimize Wordle
• Optimize stencil operations

• Documentation and reflection – 60% of the grade
• This is a true discriminator!

Part 3: Did it work?

Results

Feedback

• High grades across all
categories.

• High praise for the
course structure and
interconnection
between components.

• High workload students
spend 20–50% more
time than officially
allocated.

Lessons learned
1. Performance Engineering is appealing when treated like a puzzle.

• We appeal to students’ curiosity to understand why applications behave weirdly on different systems.
2. Provide both methods and tools for each part of the course.

• Students appreciate the theory much better when they can link it to concrete examples.
3. Do not underestimate empirical analysis efforts, especially when experimental design

is missing, and/or automation is not properly defined.
• We spend time and provide many examples on how this should be done correctly and efficiently.

4. Projects stimulate creativity, and students should be allowed exploration time and
space.
• We provide no endline for our projects, and allow students to try different things

5. Stimulate critical thinking by reporting on both positive and negative results.
• We grade the process and the actual insights, and not ultimate speed-up or high-accuracy;

understanding why and how methods and tools work and fail is fundamental to such a course.
6. This is an intensive course for both teachers and students.

• We offer a course that students can rely on and apply for their real-life performance engineering
projects

Practical aspects - positive
• Applications that work

• matrix multiplication
• histogram
• SpMV
• Graph processing

• Systems that work
• CPUs, GPUs, heterogeneous, distributed

• Tools that *exist*
• Many many many, and we keep updating them

Practical aspects – challenging*
• Lack of background

• Math knowledge
• Statistics knowledge
• Programming skills
• Data management

• Lack of curiosity / goals / … ?
• Difficult to select projects

• Lack of big thinking

Performance Education in a Data-Driven World
• Performance Engineering is a big data problem

• Many systems
• Many input datasets
• Many metrics and data to collect

• Performance Engineering with ML is exciting …
• But still requires to explain why
• Usually a starting point
• Leads to interesting patterns

• Collecting data and traces leads to very creative performance
analysis & optimization methods

Motivating students
• Provide a mix of theory + practice + real-world application
• Treat performance like a puzzle
• Do lots of hands-on things: quizzes, project, exercises, labs
• Provide a lot of examples and war stories
• Combine hardware (systems) with software (programming) and

modelling (not-a-lot-of-math)
• Target metrics - ”fast”, “efficient”, “energy-saving” …
• Target practical skills and cultivate appetite for theory

Take home message

Take home message

• Pro’s:
• The toolbox approach exposes students to many methods and their

implementation into tools
• They practice on ”controlled” applications
• They “apply” on a “real-world” project
• They choose how and when to use them
• They learn what is needed today for system-level performance modeling

• Con’s
• “Demand-driven” - principles follow practice
• Not a lot of math and not a lot of theory

to-the-office

Take home message

• We were lucky to embed the course within a series of courses
• Making puzzles was easy

• We had an excellent set of TAs
• We spent a lot of time in quizzes and report reading and providing

feedback
• We embraced machine learning from the very beginning

• Students wanting to use it, can …
• And find out it is non-trivial.

to-the-office

What next ?
• A general curriculum for performance engineering ?

• A “compendium” of theory and practice ?
• Keep up-to-date with models and tools

• Expand to sustainability metrics ?

• Expand to …
• Computing continuum e
• Embedded/cyber-physical systems
• Model-based (co-)design

