How can we teach workload
modeling in CS systems
classes?

@ TeaPACS 2024

Cristina L. Abad

Escuela Superior Politécnica del Litoral (ESPOL)

About me

Cristina L. Abad
Associate Professor at ESPOL (EC)

Deputy Dean of Research
Lead the Distributed Systems Lab

PhD in CS, University of Illinois Urbana-Champaign

O

Thesis: Big Data Storage Workload Characterization, Modeling
and Synthetic Generation

Member of the Steering Committee of the SPEC RG

@)

Elected Secretary

Have taught

@)

o 0 0 0O O O

Distributed Systems
Advanced Operating Systems
Cloud Computing

Big Data Architectures
Operating Systems
Computer Networks
Computer Communications

Research at intersection of PE & DS + CS Education

Learning through creating learning objects: Experiences with a
class project in a distributed systems course @ ITiCSE 2008
Have We Reached Consensus? An Analysis of Distributed
Systems Syllabi @ SICGSE 2021

An Analysis of Distributed Systems Syllabi With a Focus on
Performance-Related Topics @ WEPPE 2021

Teaching
workload
modeling is
Important

Importance of workload modeling

e Incorrect assumptions about workload — Sub-par designs Workload Modeling
i for Computer Systems
and evaluatlons Performance Evaluation

o Garbage in — Garbage out

e Workloads cannot be an afterthought
e Understanding workloads can help us reason about results

e Not trivial to do:
o Which features of the workload should be modeled?
o How do we model the features? Independently?
o Should we use the full real workload (trace) instead?

Feitelson, Dror G. Workload modeling for computer systems performance evaluation. Cambridge University Press, 2015.

Is this importance
reflected in
curriculum e

guidelines? Gg

What do curriculum guidelines say? (ACM, 2020)

2020 guidelines:

e Moved away from knowledge area, knowledge unit, learning outcome
mindset of the 2013 and prior guidelines to competency-based learning

e Result: Guidelines removed (1) mention of workloads
o And, queueing theory (and prob, stoch)

e Kept (a few) performance and simulation references

o These mentions are at the same time too general and too specific to be useful for educators
(Examples in next slide)

From ACM 2020 (2021)

C.2.2: Computer Science Draft Competencies

e NC-Networking and Communication
o Design and implement a simple reliable protocol for an industry network by considering factors that affect the
network’s performance.

e PD-Parallel and Distributed Computing
o Implement a parallel divide-and-conquer (and/or graph algorithm) for a client by mapping and reducing opera-
tions for the real industry problem and empirically measure its performance relative to its sequential analog.

e SF-Systems Fundamentals

o Design a simple parallel program for a corporation that manages shared resources through synchronization
primitives and use tools to evaluate program performance.

o Design and conduct a performance-oriented, pattern recognition experiment incorporating state machine
descriptors and simple schedule algorithms for exploiting redundant information and data correction that is
usable for a local engineering company and use appropriate tools to measure program performance.

o Calculate average memory access time and describe the tradeoffs in memory hierarchy performance in terms
of capacity, miss/hit rate, and access time for a local engineering company.

o Measure the performance of two application instances running on separate virtual machines at a local
engineering company and determine the effect of performance isolation.

e CN-Computational Science
o Create a simple, formal mathematical model of a real-world situation and use that model in a simulation for a
local technology company.

https://www.acm.org/binaries/content/assets/education/curricula-recommendations/cc2020.pdf

What do curriculum
guidelines say?
(ACM, 2023 Beta)

2023 appears to be bringing these
concepts back, giving them a higher
importance

e They brought back the same
wording from 2013; made them
core knowledge

Even added explicit
pre-requisites that mention
queueing theory and stochastic
processes / probability

SF/Performance Evaluation
[2 CS Core hours and 2 KA Core hours]
Topics:

Performance figures of merit

e \Workloads and representative benchmarks, and methods of collecting and analyzing
performance figures of merit

e CPI (Cycles per Instruction) equation as tool for understanding tradeoffs in the design of
instruction sets, processor pipelines, and memory system organizations.

e Amdahl’s Law: the part of the computation that cannot be sped up limits the effect of the parts

that can

Analytical tools to guide quantitative evaluation

Order of magnitude analysis (Big O notation)

Analysis of slow and fast paths of a system

Events on their effect on performance (e.g., instruction stalls, cache misses, page faults)

Understanding layered systems, workloads, and platforms, their implications for performance,

and the challenges they represent for evaluation

e Microbenchmarking pitfalls

Relevant changes from 2013:

e Added a new unit of system performance, which includes the
topics from the deprecated unit of proximity and the
deprecated unit of virtualization and isolation;

e Added a new unit of performance evaluation, which includes
the topics from the deprecated unit of evaluation and the
deprecated unit of quantitative evaluation;

Other curriculum initiatives?

NSF/IEEE-TCPP Curriculum Initiative on PDC

NSF/IEEE-TCPP Curriculum Initiative on Parallel and Distributed Computing -
Core Topics for Undergraduates Version 2.0

e Architecture topics — Performance metrics

Memory bandwidth |[Be able to explain significance of memory bandwidth Arch2
with respect to multicore access, and different contending
workloads, and challenge of measuring

Network bandwidth||Know how network bandwidth is specified and explain [Arch2
the limitations of the metric for predicting performance,
given different workloads that communicate with
different contending patterns

Back to the question: Is this importance (of WM)

reflected in curriculum guidelines?

e No explicit mentions of workload modeling

e Few mentions workloads about using them in evaluations
o BUT, in some cases, only within some topics/areas but not others

e Competency/skills-based guidelines approach makes it harder to explicitly
include importance of workloads in performance

Where (in the CS
curriculum) can we
teach workload

modeling? Q.
@

Where (in the CS curriculum) can we teach

workload modeling?

e Standalone courses (?)

e Applied statistics courses

e Software eng. courses
e Simulation courses

e Performance courses
e Monitoring courses

e Systems courses

— Too specialized

— Unlikely, as other applications are more
commonly taught

— Unlikely, unless course focuses on testing

— Briefly discussed in this talk
— Briefly discussed in this talk
«— This talk!

Where (in the CS curriculum) can we teach

workload modeling?

e Standalone courses (?)

e Applied statistics courses

e Software eng. courses
e Simulation courses

e Performance courses
e Monitoring courses

e Systems courses

— Too specialized

— Unlikely, as other applications are more
commonly taught

— Unlikely, unless course focuses on testing

— Briefly discussed in this talk
— Briefly discussed in this talk
«— This talk!

Where (in the CS curriculum) can we teach

workload modeling? Performance courses

e Performance evaluation (and benchmarking)
o Workloads are essential; no other way of doing this

e Performance modeling
o Depends on preferences of instructor

Where (in the CS curriculum) can we teach

workload modeling? Performance courses

e Performance evaluation (and benchmarking)
o Workloads are essential; no other way of doing this

e Performance modeling
o Depends on preferences of instructor

Introduction:

Motivation and problems

The issues: techniques, metrics, and workloads
Using measurements, simulations, and analysis
Jain chap. 2, 3

ex0: looking at graphs

Queueing analysis:

‘Workload analysis and characterization
23/3/14||Summary statistics such as mean and median
6 Feitelson, Workload modeling for performance evaluation. Performance 2002 tutorials (or the long version)

Creating a variate from a distribution
Jain chap. 12, 28; Law/Kelton chap. 6, 8

Useful distributions

Parameter estimation techniques and goodness of fit
Comparing distributions using quantile-quantile plots
Law/Kelton chap. 8; Jain chap. 29

7 Heavy tails and long tails

Power laws and the Pareto distribution
1/4/14|Mass-count disparity and conditional expectation ex6: fitting a distribution with Q-Q plots
Popularity and the Zipf distribution

Crovella, Performance evaluation with heavy tailed distributions. JSSPP 2001

25/3/14 ex5: generating random variates

30/3/14

Case study: load balancing
Oblivious balancing

8/29/4/14 |Balancing based on workload characteristics ex7; characterizing requests from a web

server

15(3) pp. 253-285, Aug 1997
Feedback in workloads (slides)

The daily cycle of activity

11/5/14||User-based workload modeling project: extracting feedback data
9 Shmueli and Feitelson, Using site-level modeling to evaluate the performance of parallel system schedulers. 14th MASCOTS,
Sep 2006

Self similarity
The Hurst parameter

13/5/14

Simulation:

Performance Evaluation Example: Topics in Performance Evaluation (Prof. Dror Feitelson)

Example 2: Performance Evaluation and QoS

(Prof. Maria Carla Calzarossa)

1.
2.
3.
4.
d.
6.
7.

Introduction
Measures

Workloads —

Metrics and fundamental laws
Service centers; queue networks
Other performance topics
Simulation

Definitions. Load types, levels of detail, parameters.
Quantitative and qualitative parameters, measured
and derived. Methodological approach. Exploratory
analysis: basic statistics, frequency distributions,
percentiles, scatter plots and correlations. Web
server log analysis. Static and dynamic properties of
the workload. Parameter scaling. Statistical
techniques: clustering. Hierarchical agglomerative
algorithms: dendrogram. Hierarchical algorithms:
k-means. Principal component analysis.
Correspondence analysis. Linear and non-linear
regression methods. Examples of studies requiring
detailed knowledge of workload intensity.

Where (in the CS curriculum) can we teach

workload modeling? Performance courses

e Performance evaluation (and benchmarking)
o Workloads are essential; no other way of doing this

e Performance modeling
o Depends on preferences of instructor

Performance Modeling: Different course flavours

Groups of PM courses [Persone 2020]:

e General PM

PM for Communications Systems
e PM for Software

Gen PM PM for CS PM for SW
Operational Laws, Queueing Systems, Statistics
Fluid models Combinatorics LON
Optimization Control Petri nets
Petri nets Fluid models Simulation
Probability Game Theory Workload charact
Process algebras Graph Theory
Simulation Net Calculus
Stochastic processes Optimization
Timed automata Probability
Workload charact Simulation

Stochastic processes

Personé, Vittoria de Nitto. "Teaching Performance Modeling in the era of millennials." arXiv preprint arXiv:2001.08949 (2020).

PM Example 1: Analytical PM (Prof. Y.C.

Tay)

e Use real systems papers to
illustrate usefulness of different
analytical models (incl. in relation
to workloads)

o E.g. “GPUs and disks, routers and
crawling, databases and multimedia,

worms and wireless, multicore and
cloud, security and energy, etc.”

2.6 Bottleneck analysis

No matter how complex a system is, estimating its performance is
usually easy at two extremes: when workload is light and no time
is wasted on queueing for resources, and when workload is heavy
and performance is determined by a bottleneck resource that is
rarely idle. These extremes determine two straightline asymptotes
that meet at a knee, and performance is a nonlinear curve around
this knee, but converges to these asymptotes for light and heavy
workloads. Sometimes, it suffices that the model locate these two
straight lines via a bottleneck analysis.

Y.C. Tay. 2019. Lessons from Teaching Analytical Performance Modeling. In Companion of the 2019 ACM/SPEC International Conference on
Performance Engineering (ICPE '19). Association for Computing Machinery, New York, NY, USA, 79-84

PM Example 2: Perf. Engineering (Dr. Giuliano Casale)

e Course designed at the intersection between performance engineering

and systems engineering, with a focus on cloud computing systems

o “[..] focused on the intersections between PE with cloud computing, but taking primarily a
systems engineering and measurement view”

e Sample topics:

o Markov chains to describe user workload patterns — workload modeling
o Labs with where students instantiating and size VMs and conducting benchmarking and
workload characterization experiments

Giuliano Casale. 2023. Performance evaluation teaching in the age of cloud computing. SIGMETRICS Perform. Eval. Rev. 51, 2 (2023), 45—49.

Where (in the CS curriculum) can we teach

workload modeling?

e Standalone courses (?)

e Applied statistics courses
(or DS)

e Software eng. courses
e Simulation courses

e Performance courses
e Monitoring courses

e Systems courses

— Too specialized

— Unlikely, as other applications are more
commonly taught

— Unlikely, unless course focuses on testing

— Briefly discussed in this talk
— Briefly discussed in this talk
«— This talk!

Where (in the CS curriculum) can we teach

workload modeling? Monitoring courses

e “Monitoring is at the basis of workload characterization” [Calzarossa 2021]

o When monitoring, the system must be under an artificial workload (active monitoring) or real
workload (passive monitoring)

e PRO: DevOps is a hot topic/skill for students

e Arguably, monitoring courses can be considered systems courses
o “[...] monitoring makes it possible to see in action concepts taught in classes (e.g., Internet
protocol stack, software systems), thus bridging the gap between theory and practice.”
o Or, software engineering
o Or, performance evaluation

o Different versions of these courses exist, depending on expertise of instructor

Maria Carla Calzarossa, Luisa Massari, and Daniele Tessera. 2021. Performance Monitoring Guidelines. In Companion of the ACM/SPEC International
Conference on Performance Engineering (ICPE '21). Association for Computing Machinery, New York, NY, USA, 109-114.

Where (in the CS curriculum) can we teach

workload modeling?

e Standalone courses (?) — Too specialized

e Applied statistics courses — Unlikely, as other applications are more
(or DS) commonly taught

e Software eng. courses — Unlikely, unless course focuses on testing

e Simulation courses .
These are usually elective courses, chosen

e Performance courses by few students

e Monitoring courses

e Systems courses

Where (in the CS curriculum) can we teach

workload modeling? Systems courses

From the ACM CS Curriculum Guidelines (2023) — Systems Fundamentals KA

In the curriculum of computer science, the study of computer system

oL s, in ne. but not limited to. operating svstems. -allel and dis

COTTITIL NELWOUIRS, COITIL iectul nd orgar drll chgin ‘J: The
System Fundamentals knowledge area, as suggested by its name, focuses on the fundamental concepts
in computer systems that are shared by these courses within their respective cores. The goal of this
knowledge area is to present an integrative view of these fundamental concepts in a unified albeit
simplified fashion, providing a common foundation for the different specialized mechanisms and policies
appropriate to the particular domain area. These concepts include an overview of computer systems,

basic concepts such as state and state transition, resource allocation and scheduling, and so on.

s ¢

This is the only area in the guidelines where workloads are mentioned

Where (in the CS curriculum) can we teach

workload modeling? Systems courses

e Only way to make sure students are exposed to the concept of workload
modeling (other courses are elective)

e Enables departments to teach performance even if they have stopped teaching
PM courses

e Fits well with existing curriculum guidelines
e Fits with how perf. practitioners (as a community) have evolved [Casale 2023]

e Can help motivate students to take courses focused on PM

Where (in the CS curriculum) can we teach

workload modeling? Systems courses

“To facilitate the dissemination of performance evaluation concepts thus increasing
the number of students interested in this discipline, another action can be taken at
the organizational level. It consists of the integration of performance evaluation
concepts, with simple examples, in some popular computer engineering courses.
Very few lessons are needed and an application-oriented approach should be
adopted.” [Serazzi 2022]

Serazzi also argues for a learning through applications approach .

Giuseppe Serazzi. 2022. Updating the Content of Performance Analysis Textbooks. SIGMETRICS Perform. Eval. Rev. 49, 4 (March 2022), 24-27. @ TeaPACS 2021

o

How can we
teach workload
modeling in CS
systems classes?

How can we teach workload modeling in CS systems classes?

e Pen-and-paper exercises (e.g., classical caching eviction problems)
o Hard to include modeling; clumsy; only for very simple WMs

e Make workloads a first-class citizen
o Add a unit or subsection on workload modeling
o Discuss thoroughly when applicable
o Include code to test systems using different workloads

e Include experimentation with diverse workloads in one or more labs

e Homework where students simulate a networked system

e Arequirement of the final project

e Research paper-based analysis (e.g., for advanced, seminar-style classes)

e Eval. of system for a client (competency-based curriculum guidelines)
o What if their workloads are not interesting?

Make workloads a

first-class citizen

An Operating Systems example

Memﬂstsu'w04l4éw‘34
1
g 41\ 2] 4] 4 4lg 4

5
6

e Workload assumptions in first
subsection of some chapters!

e Workloads discussed in examples

e Questions about how workloads
affect results

e Additional code provided

o Students can run simulations w/
different workloads

o More advanced workload modeling left to suggested

readings

22.6 Workload Examples

Let’s look at a few more examples in order to better understand how
some of these policies behave. Here, we’ll examine more complex work-
loads instead of small traces. However, even these workloads are greatly
simplified; a better study would include application traces.

Our first workload has no locality, which means that each reference
is to a random page within the set of accessed pages. In this simple ex-
ample, the workload accesses 100 unique pages over time, choosing the
next page to refer to at random; overall, 10,000 pages are accessed. In the
experiment, we vary the cache size from very small (1 page) to enough
to hold all the unique pages (100 pages), in order to see how each policy
behaves over the range of cache sizes.

Op’eratihg

' .'Thr'eé Eaéy Pieces:

100%

80%

20%1 [

0% 7

- Remzi H.Aiﬂpauci-Dusé_é'au
Andrea C.Arpaci-Dusseau

The No-Locality Workload

- OPT
LRU

X FIFO

— RAND

0 20 40 60 80 100
Cache Size (Blocks)

Figure 22.6: The No-Locality Workload

Experimentation in
guided labs

Can include workload characterization
or modeling components

E.g., in a Distributed Systems or Cloud
Computing class

Example: predictive autoscaling

| ask my students:

+ Why do we need predictive modeling?
» Could reactive autoscaling be enough?

Cassandra autoscaling: Unpredictability of horiz./vert. scaling
with cost of data synch. effects in microservices
Table 1: Two cases where the front-end microservice is the bottleneck
5500 System Workload Front-end Config.
. Case Request Distribution Conc. | Think | CPU Replica
——— VM| Creation Home | Catalog | Carts | Users | Time | Share s
5000 ggf 57% 20% 4% - laum;;* 7's6c (13(")7 1
SO0
g @
4000 | £ 150
8
3500 Synchronization period o6 ~— Horizontal Scaling| |
& —=— Vertical Scaling
3000 - - : g
0 50 100 150 E_u 50
s 10 20 30 40 50
Minutes Minutes Minutes
(a) Case A (b) Case B

Giuliano Casale. 2023. Performance evaluation teaching in the age of cloud computing.
SIGMETRICS Perform. Eval. Rev. 51, 2 (2023), 45-49.

Simulation
homework/project

Workload models are a natural way of
injecting load

Useful for a Networking, or DS class

Ref: Computational Forensics and Investigative Intelligence,
CMU,

15-498 Project #2
Simulating a Distributed System

Computer Networks: A Systems Approach, fourth edition, by Larry Peterson and Bruce Davie.
Operating Systems Concepts, seventh edition, by Silberschatz, Galvin and Gagne

Distributed Systems: Principles and Paradigms by Tanenbaum and van Steen

Distributed Systems: Concepts and Design, fourth edition, by Coulouris, et al

The Workloads

Although your workloads can, technically, be hand-crafted — it is a much better idea to generate
them automatically using some sort of statistical distribution as a guide, for example, an
exponential or normal distribution. Using these as the “basics”, you can then add failures or other
features. Doing this will enable you to test many, many possibilities with far less work.

There are four basic things to consider in developing your workloads:

1) When should each processor request access to the critical section?
2) How long should each access to the critical section last?

3) When should failures occur?

4) How long should each failure last?

You are welcome to answer these statically by creating long lists of activities by hand. But, for
reasons of your own sanity, we don’t recommend this. Instead, we recommend that you use
statistical models to describe these things. For example, you might want to assume that the
frequency of each processor’s request is governed by a uniform distribution — basically
sprinkling an equal number of processors along the distribution from “never use critical section”
to “sometimes use critical section” to “constantly use critical section”, and everything thing
along the way. Or, instead, you might want these to follow a linear distribution or an exponential
distribution. The same goes for failure. You probably want to pick a model for the occurrence of
and duration of failures, and then generate failure events accordingly.

Tweaking Workloads

In addition to workloads based on pure distributions, you might want to tweak some workloads
to test certain edge cases, for example the “tie situation” in the majority voting scheme. This is
especially important if you suspect that certain cases might have interesting results — and they
don’t happen to come up in your distribution-generated experiments.

You might also want to try to determine how often these interesting cases occur within for
different statistical distributions at different levels of contention.

A requirement of a
final project

Example, Distributed Systems class:

Implement a key-value store
Evaluate with configurable
workloads and real traces
Extra credit for most
performant implementation!
Other benefit: Students learn to
integrate their solution with
existing benchmarking tools

Similar experience at OS class,
implementing different page eviction
policies

Command-Line Parameters

Configuration File . 4

workload=...

[CoreWorkload|RepiayWorkl
oad]

CoreWorkload Client
Threads

Stats

DB Clients

DB

e
&P

Figure 1. KV-replay’s architecture, as an extension to YCSB.

E. F. Boza, C. San-Lucas, C. L. Abad and J. A. Viteri, "Benchmarking Key-Value Stores
via Trace Replay," IEEE International Conference on Cloud Engineering (IC2E), 2017

Example from Advanced Operating Systems class (ESPOL)

Research paper-
based analysis

e Weekly paper discussions

e Most sessions include explicit discussions about
For advanced courses, seminars workloads used in assigned reading

Where they adequate and thorough?

Any interesting characterization presented?
Any models used?

Limitations of models used?

o O O O

e Final project is research-based and evaluations
should be done with adequate workloads (models or
traces)

Which systems
class?

|deally: All/most of them!

“To facilitate the dissemination of
performance evaluation concepts
thus increasing the number of
students interested in this discipline,
another action can be taken at the
organizational level. It consists of
the integration of performance
evaluation concepts, with simple
examples, in some popular
computer engineering courses. Very
few lessons are needed and an
application-oriented approach

e Atthe very least, do for Distributed Systems

o Performance tradeoffs are thoroughly discussed in class

Table 2: Topics, in the topic lists of the surveyed syllabi, in

Table 1: Topics, in the topic lists of the surveyed syllabi, in which scal[e/able/ability] or elast appear.

which the string perf appears.

Topic

Topic

Reasoning about system performance

Isolation and consistency semantics: Performance/usability trade-
offs

Performance at scale

Performance: eRPC

Scalability vs. fault-tolerance vs. performance

No compromises: Distributed transactions with consistency,
availability, and performance (paper)

NES: Performance optimisations

Don'’t settle for eventual: Scalable causal consistency for wide-
area storage with COPS (paper)

Scale-out key-value storage, Dynamo

Case studies from industry: Google’s Chubby fault-tolerant lock
service, Google’s Spanner scalable, fault-tolerant ACID database
Large-scale data processing with MapReduce

Performance at scale

Large-scale data stores

Load balancing: LARD, Internet-scale services

Scalability issues and the concept of gossip

Scalable services, reliability, and consistency: Scale and recov-
ery for storage, leases, linearizable RPC for a replicated storage
service

Quality attributes (availability/reliability, modifiability, scalabil-
ity)

Scalability vs. fault-tolerance vs. performance

Scalability of blockchains

Elastic services in the cloud: Managed services, mega-services
and auto-scaling, request routing and load balancing: into the
network, auto-sharding and sharded request routing

o Students are more mature; have many prior knowledge

that can be leveraged

e Cloud computing classes are also a natural fit

should be adopted.” [Serazzi 2022] Cristina L. Abad, Alexandru losup, Edwin F. Boza, and Eduardo Ortiz Holguin. 2021. An Analysis of

Distributed Systems Syllabi With a Focus on Performance-Related Topics. In Companion of the
ACM/SPEC International Conference on Performance Engineering (ICPE '21).

For students

Garbage-in — Garbage-out
Understanding workload key for design and evaluation

Sometimes the best research contributions come from understanding how
different workloads stress the system

For teachers

Workloads typically students’ last concern —Give explicit credit for WM

Show examples with unexpected results coming from diverse workloads

Competition can spark interest

How can we

teach workload %

modeling in CS
systems classes?

