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1. INTRODUCTION

The First International Workshop on Teaching Perfor-
mance Analysis of Computer Systems (TeaPACS1) in 2021
came to the conclusion among participants that there is a
need to continue and regularly update the discussion on
teaching strategies, changing the curriculum, reaching out
to the systems community, facing the new generation and
their new learning habits, etc.

TeaPACS1 was online because of COVID. There was no
enthusiasm for a second workshop in 2022, since the pan-
demic had not abated then. For 2023, most conferences were
held offline again, so TeaPACS2 joined the ACM SIGMET-
RICS Conference in colocating with the Federated Comput-
ing Research Conference (FCRC) in Orlando, Florida.

However, FCRC required a timeslot to be set aside for the
plenary lecture, so we had to reduce the number of invited
talks from 5 to 4. The plethora of concurrent activities, the
long-distance travelling required and the need for visas also
reduced attendance at TeaPACS2.

Even so, there was a lively and productive discussion at
the Workshop, and this report hopes to capture that for
those who missed the event.

2. TALKS

The first invited talk was given by Giuliano Casale (Im-
perial College London), who described how he had shifted
the focus of his teaching from theory to hands-on exercises.
Cloud computing has removed many classical aspects of ca-
pacity planning, but does not nullify the need for perfor-
mance analysis. He gave examples of configuration opti-
mization (hundreds of options), resource management (siz-
ing, deployment), autoscaling (e.g. overheads and bottle-
necks) and workflow scheduling (e.g. critical paths and pre-
emption). He noted that cloud engineering is richer than
classical settings, and engaging to students.

The next talk by Diwakar Krishnamurthy (University of
Calgary) first describes the pushback from students when
teaching a mandatory course on software performance. Part
of their resistance comes from engineering accreditation re-
quirements that limit the number of coding and data science
courses offered to them, as well as students’ general discom-
fort with mathematics. His strategies for overcoming this
include case studies (e.g. web server crash), active learning
(e.g. brainstorming realistic problems), prioritizing appli-
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cation over theory (e.g. case description), and linking lab
exercises with lectures (e.g. a 13-week project on using an
analytical model for sanity checks and what-if scenarios).

Mohammad Hajiesmaili (University of Massachusetts
Amherst) gave the third talk, which revisits classical per-
formance analysis of algorithms. Competitive analysis of
online algorithms, for example, assumes the worst case, with
no knowledge of the future. There is now a growing body of
work on what performance improvements are possible when
predictions are given by machine learning, say. There is
then a tradeoff between being consistent (with the offline
optimum) and being robust (despite bad predictions). Such
Pareto optimality applies to performance analysis of com-
puter systems too, where there is a tradeoff between effi-
ciency and sustainability (e.g. carbon footprint).

Ziv Scully (Cornell University) proposed two theses: (The-
sis1) performance modeling requires advanced mathematics
and (Thesis2) we can teach that mathematics in an acces-
sible way. He sees Thesis1 in the ubiquitous heavy tail, the
complex structures of jobs (e.g. SQL stages), the metastable
equilibria, and the scheduling practicalities. For Thesis2, he
suggests simplifying the core foundations, emphasizing very
flexible tools, and using rules that work most of the time.

As with TeaPACS1, the highlight of the Workshop was
in the two discussions, where speakers and audience con-
tributed equally. The following is a record of the discussions.

3. DISCUSSION1: WHAT TO TEACH

Vittoria de Nitto Personé (Tor Vergata University of Rome)
started by asking how teachers could adapt to the expecta-
tions of a new generation of students, and whether to focus
on what students want. Much of the discussion was then
about the tension and tradeoff between students’ expecta-
tions and teachers’ goals.

Bruce Hoppe (OpenCilk) recalled his experience teaching
Web Science, whereas what the students wanted was to build
websites, and get academic credit for it.

Ziv noted that while students take away from some courses
a baby artifact (e.g. web site), they do not get such an
artifact with a course on queueing theory.

Giuliano agreed that teachers should select course con-
tent that has academic depth, but he is open to compro-
mise, ready to sacrifice theory for relevance outside the ivory
tower.

Diwakar pointed out that we should not be surprised by
crippling crashes (Twitter 2013, Amazon 2018, etc.) when
companies hire undergraduates with no training in perfor-
mance analysis. He does not consider theory and practice as



mutually exclusive — we can link academic exercises to real-
world relevance. For example, the use of queueing theory
can reduce data centre bloat, which the current generation
of students can relate to.

Echoing Ziv’s talk, Mohammad observed that there are
concepts of interest to both theory and practice, rigorous
foundational old-school tools that are relevant for the design
of data centres, say. One difficulty lies in the diversity of
students, where a course on networks may have students
with little mathematics training (e.g. psychology majors).

Evgenia Smirni (College of William and Mary) observed
that an old-style performance evaluation course that was an
easy class when she first taught it years ago is now con-
sidered a “rigorous” course by students (even after cutting
corners).

Mor Harchol-Balter (CMU) taught a course (with no math-
ematics) on system performance for engineers in the indus-
try and found that they don’t understand simple concepts —
arrival rate vs inter-arrival time, throughput, response time,
utilization, etc. (see her TeaPACS1 talk). She had students
bring in their projects and found that it took considerable
effort to just clarify the concept of “job size”. The student
for one project was surprised that an increase in cache hits
can degrade performance, but that would be obvious if one
were trained to think in terms of overheads and queueing.

In Diwakar’s experience, even operational laws and MVA
(mean value analysis) blew them away.

Vittoria asked if we still have to teach modeling, whether
you need to update queueing analysis. Would it be enough
for students to learn probability and statistics, and the use
of tools?

Giuliano put himself in the place of the students, where
they see a lot as data-driven. The industry is comfortable
with machine learning (ML), so perhaps we should settle on
their ability to pick ML models, rather than building models
with assumptions that fail in real life.

Bruce noted that, in the case of OpenCilk, black box mod-
els would not work, as the interest lies in understanding how
a number of cores and shared memory size, etc., affect per-
formance.

Diwakar quoted the aphorism, “All models are wrong,
but some are useful”; training in performance modeling and
analysis helps one deduce from measurements whether a sys-
tem is stressed, and whether a design can scale.

Ziv agreed that the principal value of a model lies not in
analyzing a system exactly, but in clarifying what is going
on, what the critical issues are. Crafting a model requires
an unambiguous specification of the system, thus revealing
what we know and what we don’t.

Evgenia considers performance modeling as fundamental.
Vittoria then asked: how should a performance modeling

and analysis course relate to currently popular courses?
Giuliano suggested spreading the material across proba-

bility and simulation courses; it would be more effective, as
the students would immediately see its usefulness, and this
might motivate those with weak mathematical training.

Bruce noted, in relation to OpenCilk, that some courses
on parallel programming are evolving to include performance
engineering.

Wrapping up the discussion, Vittoria noted that while we
might try to cater to the students’ interests, they don’t know
what they need to know. Ziv and Evgenia agreed: “They
don’t know what they don’t know.”

4. DISCUSSION2: HOW TO TEACH

A new attendee, Qian Xie (Cornell University), joined this
discussion.

Vittoria asked: What are the best practices? What worked
and what did not? What innovation can we bring to teach-
ing performance analysis?

Ziv gave an example where GJ Sussman (MIT) taught
classical mechanics with no theorems, just programming
exercises and simulations, where students learned to think
about systems.

Kristy Gardner (Amherst College) asked, “How do we in-
troduce performance analysis to undergraduates?”

Giuliano suggested taking the technology of the day —
say, MS Azure’s serverless functions — to demonstrate queue-
ing and caching, etc. Or take a topic from the syllabus and
design a competition that taps into student creativity. (His
students commented: “Modeling was hard, but blew our
minds!”)

Qian suggested presenting some real-world examples and
letting the students work through optimizing policies. Bruce
cautioned that they may confuse underlying theorems with
handwaving, and Qian agreed that they may be unable to
tell the difference.

Vittoria then described how, in her 90-hour course for
graduate students, she requires them to propose modeling
projects themselves. The students’ proposals included trans-
port, entertainment, healthcare, vaccination, first aid, crim-
inal justice, as well as the more traditional cases of cloud
and distributed systems. Vittoria requires them to demon-
strate their modeling ability, collect real data, do statistical
analysis, build a simulator and validate their models.

The pros of this approach: Students appreciate having
self-proposed case studies and are more motivated and en-
gaged. Moreover, this often allows them to unify concepts
seen in different courses and understand the global meaning
of the curriculum. The cons: weaker students find it diffi-
cult to identify a non-trivial case study; the teacher must
acquire the relevant domain knowledge (from the students);
each project is different, and this means more time for eval-
uation.

Mohammad asked if the students were given guidelines for
how to choose their projects. Y.C. Tay (National University
of Singapore) also requires students to propose their model-
ing projects and, in his case, he encourages them to model
the system that they, or their labmates, are working on (so
they can add a modeling section to their paper/thesis, say).

Qian pointed out that undergrads may not know enough
to make a good choice (Mohammad: it may be too easy or
too difficult), so frequent feedback from the teacher would
be necessary.

Giuliano sees value in a combination of simulation and
analytical modeling. The cross-validation helps the students
see the value and limitations of the models — it can be
a revelation to them that equations can actually capture
simulation measurements. Vittoria also combines analysis
and simulation in parallel teaching. She shows the students
how the simulation, in some cases, exactly realizes some
analytical laws, e.g. Utilization Law.

Diwakar worries that the projects do not demonstrate
what the instructor wants them to learn.

In summary, Qian sees this approach to projects as a
tradeoff: If the teacher picks the project, the students may
not care much, and just focus on checking off the boxes



in the evaluation criteria; but they get to understand the
principles and practice advanced mathematics. If students
pick their projects, they are more engaged, possibly gaining
deeper learning from seeing, understanding and doing.

The discussion ended with some time put aside for Mor to
raise the issue of NSF support for courses on performance
evaluation and analysis. She invited suggestions on how to
obtain NSF funds for such grant proposals.

5. CONCLUSION

Somewhere in the discussions, there was a suggestion to
create a repository for teaching materials. For a start, there
is now a collection of TeaPACS1 and TeaPACS2 slides and
reports at https://teapacs.github.io/materials.html. It
is hoped that those who visit this site will benefit from the
experiences described and the suggestions given by the in-
vited speakers and participants.
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ABSTRACT
Cloud computing has been one of the most significant de-
velopments in computer science of the last two decades, fos-
tering sharp changes in performance engineering practices
across the computing industry and, at the same time, pro-
foundly steering research trends in academia. A distinctive
trait of this paradigm is that cloud engineers can program-
matically control application performance, raising an expec-
tation for computing graduates who find employment in soft-
ware and system development to have basic performance en-
gineering skills. This, in my view, calls for a broader and
deeper education on software and system performance topics
as part of the computing curriculum, while at the same time
requiring a rethink of the syllabus of a classic performance
evaluation module. This abstract presents my personal ex-
perience in doing so, including a discussion on the educa-
tional strengths and weaknesses of performance engineering
emerging from cloud computing practice.

1. INTRODUCTION
If we wish to reflect on how we should teach performance-
related topics in university modules, I believe a good place
to start is to ask ourselves what professional profiles can
leverage the methods and results developed in performance
evaluation and engineering (PE), and whether the way the
community teaches the discipline is appropriate in educating
students for these roles. Indeed, university education ulti-
mately has a mission to prepare students for their careers,
therefore such a reflection is in my view needed to avoid
designing modules based on personal preferences alone.

Several professions can surely make good use of the tools,
insights, and fundamental laws developed over the years by
the performance evaluation community. For example, net-
work traffic engineers can benefit from a deep understand-
ing of queueing theory and point processes. Similarly, data
scientists are often confronted with understanding complex
stochastic phenomena from data, a challenge that shares
similarities with performance measurement and workload
characterization. Simulation and modelling tools are widely
used by professionals in enterprise management and plan-
ning (e.g., logistics). Consultants need to design appropri-
ate workloads to find bottlenecks and determine the perfor-
mance limits of systems built by their customers. Classic
PE topics, such as stochastic modelling, performance mea-
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surement, and operational analysis, can therefore still un-
doubtedly play a role in shaping the minds and strengthen-
ing the preparation of our students for all these professions
and tasks. Yet, in this paper, I take a different view on the
suitability of classic PE teaching topics for educating stu-
dents who wish to understand performance in the context
of software systems. This is an important student group,
since software engineering is one of the topics that regularly
motivates students to choose computing degrees. In particu-
lar, I believe that academics who wish to tailor their courses
to prepare students to deal with software performance engi-
neering in the age of cloud computing should consider to:

1. reduce the prominence in PE modules of stochastic
modelling topics, part of which may still be taught
within other modules, such as probability and statis-
tics courses;

2. refresh the PE module syllabus with novel topics, prob-
lems, and examples emerging from cloud computing,
striking a balance with classic PE concepts and theory.

3. feature in the PE module a “hands-on” component
to foster a better understanding of real-world perfor-
mance issues that arise in cloud systems and tech-
niques available nowadays to monitor and dynamically
address such problems while the system is in operation.

The above recommendations are subjective views that re-
flect my personal experience in teaching PE for the last 15
years. The paper intends to expose my opinions and sug-
gestions in an informal way. I give in Section 3 an overview
of the evolution of PE teaching within the Department of
Computing at Imperial College London to illustrate an in-
stance where the above changes were applied in practice and
positively impacted student participation.

Concerning recommendation 1), stochastic modelling has
often been justified in the context of PE with a need to pre-
dict system behavior under unseen, or uncertain, operational
conditions. Problems such as capacity planning and design-
time software performance analysis have been put forward
to generations of students to motivate the need for PE. How-
ever, in my view, the whole idea of predicting the behavior
of complex software and services in advance of their deploy-
ment is less viable and widespread today than it used to be
at the time those earlier PE modules were designed. At the
heart of the issue lay various technological developments,
mostly related to cloud practices, which the paper discusses
in Section 2.



Stemming from the above, several classic stochastic tools
still taught in long-running PE modules, ranging fromMarkov
chains to queueing theory and Petri nets, appear somewhat
less relevant to me for professional practice in nowadays
cloud and software engineering practice. Recommendation
2) suggests that other subjects may be used to refresh the
PE module syllabus. As explained in Section 4, a number
of performance-related problems and topics emerging from
cloud computing may be used to replace, fully or partially,
the stochastic analysis subjects of a traditional PE mod-
ule. In many cases, such topics still offer space to integrate
classic PE notions into the lectures, allowing the module to
strike a balance between new and old PE content. Section 4
also elaborates on my teaching experience with these new
topics and their perceived value and shortcomings from an
educational standpoint.

Concerning recommendation 3, it is now routine for soft-
ware and service engineers to control software and system
performance programmatically, for example leveraging cloud
APIs to scale the compute and network resources avail-
able to an application. Moreover, leveraging the diffusion
of DevOps practices [1], changes to a cloud system are in-
creasingly often performed after its deployment, shifting the
emphasis of quality-of-service engineering from “correct de-
sign” to “problem fixing at runtime”. This state of play
raises, in my view, a need for computing graduates to re-
ceive, as part of their education, some basic training on how
to address performance problems for a live cloud system
while in operation. Configuring cloud auto-scaling may be
an example of a basic skill required by many employers.
This requires the ability in a student to reason on how the
capacity allocated to a software system should be varied dy-
namically to ensure that the desired level of performance
is maintained despite workload fluctuations. Auto-scaling
systems vary among different cloud platforms but, at least
in their basic implementations, they often require a limited
theoretical preparation, making them well suited for self-
contained lab exercises. Topics such as distributed tracing
and benchmarking are also well-suited to increase student
familiarity with these problems. In my view, lab compo-
nents can therefore enrich PE teaching and help convince
students to opt in for such modules through a better align-
ment with cloud engineering practice.

2. EDUCATING FOR THE PROFESSION
PE is a continuously evolving discipline, allowing us to look
back at its trajectory over the years to spot how today’s PE
differs from the one for which classic PE modules were de-
signed. As mentioned, since the majority of students seek
university education to prepare for a career in companies, I
believe it is important to look at the application of perfor-
mance concepts in a practical setting to steer the educational
offering proposed in academic PE modules.

One possible way to do so is to look at the notion of per-
formance discussed in practitioner events. The focus of this
section is therefore on observations on the evolution of the
Computing Measurement Group (CMG) [12], a prominent
community of performance practitioners. This community
featured at the height of its popularity several international
branches, which organized local events and brought together
several hundreds of people worldwide with a keen interest
in the topic of performance evaluation. The community
also ran the popular CMG conference for many decades,

which gathered contributions from industrial practitioners
and scholars in the PE field. In a typical year, the CMG con-
ference program would include presentations from experts
and capacity management teams, for example operating in
banks or in ICT consulting companies. Notably, despite
its practical scope, the event included presentations from
research scholars, demonstrating the presence of a healthy
interaction between the research and the practitioner com-
munities.

For a historical perspective on the notion of performance
discussed at these events, the reader may look at the sur-
vey in [12], which focuses on themes touched upon in the
1970s and 1980s. Taking CMG 2003 as a more recent exam-
ple, the conference mostly featured papers on mainstream
technology (e.g., Windows, DBMS, z/OS mainframes, . . . ),
capacity management methodologies (planning, ITIL, siz-
ing, measurement, QoS), and stochastic modeling (queueing,
simulation, forecasting), demonstrating, at least in the last
two topic areas, an overall good alignment with the themes
of both PE research and education of those days.

Let us now move forward 20 years to the present day.
The same organization now brands itself as a technology
community, featuring a more industrial composition. Topic-
wise, the conference program now focuses on more recent
infrastructure technologies (cloud databases, cloud servers,
containers, ...), observability (monitoring, distributed trac-
ing, ...), and AI (automated system configuration, opera-
tionalization, ...). Interestingly, aside for monitoring and
mainframes, few contributions overlap significantly with the
topics of older conference editions. From an educational
and research standpoint, it is striking in particular to see
a near absence of tools from classic PE theory, such as
Markov chains, queueing theory, but also a modest adop-
tion of simulation-driven analysis. Clearly, a dramatic shift
in PE practice has occurred over the last two decades. In my
opinion, this suggests that PE educators should take notice
of this change along the lines of recommendation 2 in the
introduction.

The reasons for such a shift in PE practice are surely
multiple. It may still be possible to conjecture on what
some of these might be so as to inform how PE education
should change as a result. To begin with, computer systems
are generally much more complex than in the early days of
PE, and basic analytical and simulation models tend to per-
form less accurately in complex systems than data-driven
AI models. AI models also take a black-box approach to the
problem that broadens their applicability, whereas stochas-
tic networks typically require some knowledge of how the
system works, and in this sense they are much more time-
consuming to develop, besides requiring skilled profession-
als.

There may also be several other reasons why classic PE
modeling tools are not as widespread as they used to be. For
example, if cloud engineers can quickly and cheaply correct
performance problems on-the-fly, allocating and removing
capacity in a matter of minutes, and thus the cost of re-
source allocation mistakes is low and easily fixable, reactive
methods in use in many cloud systems, albeit not perfect,
are sufficient for many companies. Moreover, if monitoring
is cheap, ubiquitous, and allows the observation at a high-
frequency of live distributed systems, steady-state analysis
via a model may be a less appealing way to characterize per-
formance than directly doing performance troubleshooting



on the running system. And even in situations where steady-
state predictions can be helpful, with applications that are
densely layered, built on top of a stack of platform services
and software-defined infrastructure (e.g., IaaS, containers,
JVMs, serverless, etc), such predictions may become brit-
tle, as the models can only characterize a small slice of the
overall system.

Summing up, the technological evolution driven by cloud
computing has shifted the attention of PE practitioners in
the software domain to observing systems in a live environ-
ment and to using AI models to reason on their performance.
The cost of applying hand-crafted performance models re-
mains high and companies face skill shortages of staff experts
in building such models. As suggested in the recommenda-
tions in the introduction, this warrants in my view a major
rethink of which PE topics should be taught in academia in
the perspective of better preparing students in computing
degrees towards careers in software and service engineering.

3. PERSONAL TEACHING EXPERIENCE
In many discussions I have had over the years with col-
leagues in the PE field, the subject of a perceived change
of tastes of the students in recent years has come up many
times. This circumstance is one that I have also observed
myself in the PE courses taught within the Department of
Computing at Imperial College London. The goal of this
section is therefore to give an example of how my PE teach-
ing has evolved in response to the challenges described in
the previous sections.

In the Department of Computing at Imperial College Lon-
don taught modules normally involve 28 hours of frontal
teaching, including both lectures and tutorials. The lat-
ter may be either in-class tutorials or lab sessions. Classes
in the last two years of the curriculum, where PE topics
are typically taught, include a mix of both undergraduate
and Master’s students. A short module duration of just 28
hours, which maps to a mere 4 hours a week for 7 weeks, is
not uncommon in the UK. It implies that module lecturers
need to carefully select their syllabus, as it would be diffi-
cult for example to present the content of an entire book in
such a short time span. Assessment is typically based on
coursework and a written exam.

A Performance Analysis module was taught for decades
in our department, which students could optionally select
in the last year of their studies. The Performance Analy-
sis module was focused on probabilistic modelling, with an
emphasis on Markov processes, queueing theory, and nu-
merical exercises. The course ran smoothly for many years
and students were generally keen (if not fascinated) to ex-
plore the mathematical techniques available for computer
system analysis, such as Markov processes, queueing sys-
tems, queueing networks, Petri nets, stochastic process al-
gebras, and others. However, the recent generations of com-
puting students showed a decreasing interest in stochastic
theory, possibly as a result of the factors outlined in the
previous sections and the concurrent rise of AI, which has
shifted the interest of those keen on mathematical modelling
onto subjects related to machine learning. A decision was
taken to end the long-running Performance Analysis mod-
ule in 2014, replacing it with a module with the title but,
due to other staffing needs, with half credits (14 hours of
frontal teaching) and an entirely new syllabus.

For the new course, which started in 2015, I decided to

soften the mathematical density of the module by switching
to a mean-value analysis (MVA) based PE teaching, cen-
tering the presentation on materials covered in the classic
PE book by Lazowska et al. [10], refreshed with real-world
examples from cloud computing research and industry. A
distinctive feature of Lazowska et al.’s book is the ability to
present essential performance analysis theory without enter-
ing either into a probabilistic description of the system or
formal proofs, but rather focusing only on operational anal-
ysis [3]. However, students kept demonstrating a limited
appetite for queueing theory even if this was presented in a
mathematically simpler form.

In the years that followed, I then looked to change my PE
teaching more fundamentally, significantly reducing the fo-
cus on stochastic modelling, and seeking a stronger case for
applicability and relevance to professional practice. This re-
sulted in much-improved participation and an overall higher
level of engagement from the students. The change consisted
mainly of the following modifications. Firstly, a new Per-
formance Engineering 28-hours module started in 2016 with
the syllabus focused on the intersections between PE with
cloud computing, but taking primarily a systems engineer-
ing and measurement view. The module wanted to retain
some methodological elements of classic PE (e.g., Markov
chains to describe user workload patterns). Moreover, this
was the first course in our department to teach hands-on
cloud computing basics to our students, including a lab-
based coursework that leveraged an educational sponsorship
from Microsoft Azure. In these lab sessions, the students
could learn the basics of instantiating and sizing VMs and
conducting benchmarking and workload characterization ex-
periments, followed by coursework centered on measurement
and autoscaling. This change introduced a practical side to
PE teaching that students really enjoyed. In a handful of
years, the module grew from 14 students in 2016 to 96 stu-
dents in 2020. Throughout this period, a colleague joined
me in teaching the module, introducing, among others, top-
ics related to cache performance and monitoring hardware
performance counters, further strengthening the exposure of
the students to systems performance.

At the same time of the above developments, I decided
to spread the more theoretical aspects of PE (e.g., Markov
chains, scheduling, point processes) horizontally across other
modules I taught. These included modules on probability
and statistics (2nd year), scheduling (3rd year), and simu-
lation (3rd year). My experience was that presenting top-
ics such as stochastic processes and queueing theory within
theoretically-focused modules that targeted a broader prob-
lem space then PE worked better in terms of the student
reception. I also noticed that exposing some performance
concepts only in a determining setting (e.g., deterministic
scheduling) worked better for many students than looking
at similar problems through a stochastic lens.

Summarizing, the recommendations provided in Section 1
may be seen as the key takeaways of the evolution of my
teaching discussed in this section. Evolving the Performance
Engineering module format with the inclusion of topics from
cloud computing allowed me to address what seemed a pro-
gressive decline in student numbers and interest in PE. Sev-
eral important topics that were traditionally taught in that
module, such as Poisson processes and queueing theory, have
then been spread horizontally across other modules in the
degree, obtaining a warmer reception, possibly also due to



a different composition of the student body.

4. TEACHING TOPICS
Leveraging the experience gained in teaching the modules
described in the last section, this section presents some rec-
ommendations for cloud-related topics that may be included
in a modern PE syllabus. My goal, in particular, is to re-
view topics that integrate well with classic PE materials,
allowing the lecturer to still teach several classic notions of
performance evaluation but in a renewed context.

4.1 Configuration optimization
The topic of configuration optimization deals with elaborat-
ing strategies to automatically tune the configuration pa-
rameters of a software system so as to maximize some per-
formance measures [7]. For example, in a Big data platform
such as Apache Storm, hundreds of configuration parameters
need to be assigned. Such parameters can profoundly influ-
ence the performance of cloud systems, which commonly
rely on these open-source platforms.

As traditional queueing theory models focus on a narrow
set of system parameters (e.g., number of service stations,
server multiplicities, service rates, . . . ), this topic allows the
students to develop a broader view of factors that affect per-
formance. The topic can also help them develop data-driven
modelling skills by looking at system response surfaces. The
topic is also useful to foster reasoning on how to find optimal
solutions from such surfaces.
Teaching benefits. In my experience, the configuration op-
timization topic is generally interesting to students, as it is
easily understandable and a useful skill to gain due to its
generality. A benefit of its teaching is that it has a tight
link to benchmarking, which can be used to gather the data
to fit the response surface. This then naturally leads to
cover in the module associate topics such as design of ex-
periments, the structure of a modern benchmark (such as
the SPEC benchmarks1), surrogate modelling, and regres-
sion model fitting. Books such as [9, 11, 8] offer excellent
source materials to develop lectures on the topic.

Another benefit of the topic is that it is fairly easy to set
up coursework or lab-based exercises. For example, students
may be asked to optimize a set of on/off options for a sys-
tem, e.g., enabling and disabling hyper-threading on a CPU
while observing the resulting performance changes of a ser-
vice, or changing the flags passed to a compiler, followed by
performance profiling of the compiled executable.
Teaching challenges. On the downside, this topic is rapidly
evolving in the state of the art, and thus may require fre-
quent updates to the slides. The analysis of surrogate re-
sponse surfaces to determine optimal system configuration
may also be best conducted if the students have some ma-
chine learning background (e.g., Gaussian processes) and a
basic understanding of related optimization methods (e.g.,
Bayesian optimization). The topic may also be somewhat
difficult to test in an exam setting, where limited data and
mathematical calculations can be expected.

4.2 Cloud deployment
Cloud computing systems are increasingly deployed by means
of declarative models of infrastructure resources, as in AWS

1https://www.spec.org/benchmarks.html

CloudFormation2 or OASIS TOSCA models3. An orchestra-
tor then takes in input such specifications and deploys the
application on the requested resources, instantiating them
on-the-fly on the cloud. Yet, the amount of resources re-
quested for an application is a controllable parameter that
the application owner needs to decide. This opens inter-
esting questions on how the performance engineer should
decide which and how many resources to allocate to the ap-
plication. This mindset brings into play questions similar to
capacity planning, but from a different angle.
Teaching benefits. Analytical models may be justified with
this problem as allowing to model performance within a
computational optimization program used to reach a re-
source allocation decision. In its simplest form, to avoid
the complications of stochastic models, this may be just a
linear program that depends on the utilization levels of the
resources, since operational analysis requires for these only
simple laws [3]. Where desired, methods to select specific
resource types (queue service rates), to respect service-level
agreements (e.g., response time distributions), or to account
for bare metal contention (e.g., multi-tenancy/multi-class)
may also be studied, if the chosen modelling formalism is
sufficiently expressive to address these problems.
Teaching challenges. Similarly to the configuration opti-
mization topic, also this topic has the drawback of assum-
ing some familiarity in the students with computational op-
timization methods, such as mixed-integer linear program-
ming. Describing multiclass systems may require additional
time and place additional complexities in explaining how to
parameterize the relevant models (e.g., regression-based es-
timation of service demands). Also in this case, setting up
exam questions that deal with computational optimization
formulations presents challenges, as the student cannot de-
rive by hand the solution at the exam. Assessment may be
therefore lab-based or limited to writing the optimization
program formulations without an explicit solution.

4.3 Autoscaling
As mentioned earlier, autoscaling is an essential topic for
cloud engineering [13, 6]. The topic can be integrated within
a PE module at varying degrees of sophistication (e.g., re-
active vs. proactive autoscaling). The topic also requires
the lecturer to introduce concepts of system transient and
steady-state, since the time for the system to settle after a
scaling decision is a parameter that affects the configuration
of some autoscaling rules. Autoscaling is also easy to couple
with load balancing topics, allowing again to integrate well
with materials from classic PE theory.
Teaching benefits. Several students displayed significant ex-
citement for the autoscaling topic in my modules and gen-
erated a follow-up demand for thesis supervision. The topic
is easily linked with mathematically-rich topics such as fore-
casting, scheduling, and control theory. Methods from fore-
casting such as autoregressive and moving-average processes
are appropriate for computing students as they require just
basic elements of conditional expectations and Gaussian dis-
tributions, and the fitting of small models (e.g., AR(1)) re-
quires simple algebraic formulas. Exposure to forecasting is
also helpful to students who seek to build a career in soft-
ware services for the financial industry. Such students are
common across university degrees in cities like London.

2https://aws.amazon.com/cloudformation/
3https://www.oasis-open.org/committees/tosca/



Teaching challenges. A first issue with this topic is that
if the content is presented using examples or lab exercises
based on specific cloud providers, then slides may need yearly
updates as autoscaling technologies and their interfaces evolve
rapidly. A second issue is that specific elements of the theory
are possibly too simple for a third- or fourth-year student
(e.g. rule-based autoscaling), also presenting a low level of
challenge in assessment. Lastly, a problem is that if the lec-
turer wishes to integrate elements from control theory upon
teaching the topic, for example as in [5], these require theo-
retical baselines that may not be available to all computing
students (e.g., Laplace and Z-transforms).

4.4 Serverless workflows
Serverless computing has been a prominent cloud comput-
ing trend for a number of years. Within it, Function-as-a-
Service (FaaS) allows users to execute functions remotely in
the cloud [4]. By enabling fine-grained autoscaling, FaaS
offers a systematic advantage over traditional web services
for enabling a scalable execution of scientific and business
workflows in the cloud.

Serverless workflows may be used to teach various PE top-
ics. Taking the user perspective, the module can introduce
scheduling in the presence of workflows, resorting for exam-
ple to the large body of literature available on deterministic
scheduling [2], possibly in a lighter (albeit less rigorous) form
than in algorithm theory courses devoted to the subject.

From the FaaS platform perspective, the PE module may
touch upon heuristics, such as bin packing, that the platform
may use to consolidate different serverless functions across
server machines. The effects of memory constraints on per-
formance are also an interesting topic aligned to serverless.
Workflows are also useful to introduce the notion of a dead-
line, since they are often used to support critical end-of-
month financial calculations in many businesses.
Teaching benefits. The topic has excellent appeal to stu-
dents, who see its importance in the real world and the
timeliness with respect to ongoing cloud computing trends.
When coupled with scheduling theory concepts, the topic al-
lows the lecturer to develop in the class a basic understand-
ing of important general concepts such as NP-hardness, from
which it is easy to pair the module with exercises involv-
ing metaheuristics (e.g., stochastic annealing, local search),
which in my teaching experience generate a positive response
in a computing class. It is also simple to define serverless
scheduling problems in the coursework. My taught modules
feature a workflow scheduling system for Azure Function
that is supplied to the students. The exercises often involve
studying some completion time minimization problems by
developing a workflow schedule that is executed through this
system. This generally has a good reception in the class as
it combines both technological and theoretical elements.
Teaching challenges. One limitation of the serverless work-
flow topic is the limited number of optimal methods for gen-
eral workflow scheduling [2]. Albeit several heuristics exist,
this limits the appeal of the theory that can be developed in
class. Moreover, real-world workflows can feature complex
synchronization and be trigger-based and data-driven, which
may introduce excessive complexity for modelling purposes.
Lastly, workflow scheduling problems that are not solvable
by brute force require tens of function calls. This may sig-
nificantly extend the time required to solve coursework ex-
ercises by experimental means.

5. CONCLUSION
In conclusion, the advent of cloud computing offers an op-
portunity to refresh several contents of performance evalu-
ation modules. In the early years of the performance com-
munity, there was general agreement on the importance of
having a unified discipline centered around topic such as
queueing theory. However, many more tools are available
nowadays to study the performance of complex computing
systems and performance evaluation teaching should evolve
as a result. A review discussion has been presented on top-
ics and techniques emerging from cloud engineering practice
that may be added to the syllabus of a performance evalu-
ation module, together with reflections on their educational
merits and shortcomings.
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ABSTRACT
Recent high-profile performance-related outages and prob-

lems in industry clearly establish the importance of impart-
ing performance evaluation skills to students at the under-
grad level. Yet, performance engineering is rarely a required
course in most software engineering programs around the
world. The typical undergrad student is naturally drawn to-
wards coding courses and courses on topics that they think
are likely to be in demand in industry, e.g., data science.
While sympathetic, curriculum designers often cite student
pressures and other factors such as accreditation require-
ments from engineering bodies to argue against mandating
a performance evaluation course. As a long time instructor
of a mandatory, undergrad software performance evaluation
course, I describe some of my experiences operating in such a
climate. Specifically, I outline key strategies I have followed
to motivate students and overcome their resistance to the
somewhat analytical nature of performance analysis. I also
offer my observations on how undergrad curriculums can be
tuned to instil a performance-aware mindset into students.
Finally, I point out ongoing challenges to stimulate future
solutions.

1. INTRODUCTION
Performance considerations are critical in real-world soft-

ware systems. Recently, there have been many instances of
systems failing because performance considerations were not
addressed adequately. A well-known example is the failure
of the heathcare.gov Web site, which was plagued by many
problems including poor performance. For example, there
were reports that the Web site could not even handle 500
concurrent users when it went live [1]. More recently, perfor-
mance problems have affected even Fortune 100 companies
that have access to large scale computational resources and
state of the art scaling techniques [3].

Since ignoring performance considerations can clearly
have adverse real-world implications, it is imperative that
organizations have access to engineers with performance
evaluation skills. Specifically, organizations need person-
nel that can design systems that reduce the likelihood of
operational problems related to performance. They need
engineers who can build effective scaling strategies and who
can trouble shoot performance problems on the rare occa-
sions they occur.

Unfortunately, most organizations hire undergrads [5] and
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most undergrad software engineering curriculums do not
prescribe mandatory performance evaluation courses. Per-
formance courses are more common at the graduate level.
Some universities may offer a performance course at the un-
dergrad level, but such offerings are typically not manda-
tory. In effect, we as educators are leaving performance-
related training to chance. I argue that this is quite reckless
given how critical the topic is!

In the remainder of the paper, I discuss the main chal-
lenges in including performance evaluation courses in under-
graduate software engineering curriculums. I will then focus
on one of these challenges – student buy-in. I will describe
some strategies I have observed to be effective in getting stu-
dents interested in performance evaluation. Finally, I will
present a discussion of open pedagogical problems that need
to be addressed by the SIGMETRICS community.

2. PERFORMANCE EDUCATION AT UN-
DERGRAD LEVEL: CHALLENGES

At the outset, the lack of performance evaluation train-
ing might seem like an easy problem to fix. All that needs
to be done is to create the appropriate course and decree
that it should be taken by all students. However, it is a
bit more complicated to operationalize this idea for several
reasons. One key reason is that past curriculum standardiza-
tion efforts do not explicitly include performance evaluation
as mandatory material in their recommendations. For exam-
ple, the IEEE/ACM reference curriculum [4] mentions per-
formance adjacent topics such as software quality but does
not explicitly emphasize topics such as performance model-
ing and measurement. This silence has the unintended con-
sequence of making performance evaluation and engineering
sound like a niche field thereby complicating their inclusion
in undergrad programs.

Another issue that complicates curriculum design is that
in some jurisdictions such as Canada engineering degrees,
including software engineering degrees, must be accredited
by an external body. In the case of Canada, this is the
Canadian Engineering Accreditation Board (CEAB). The
CEAB, for example, requires engineers to have depth in
their own domain but also breadth in subjects such as math,
physics, other engineering disciplines (e.g., thermodynamics,
and statics), and complementary topics (e.g., role of engi-
neers in society). While the pursuit of breadth and linkages
to other engineering disciplines is laudable, in practice, such
requirements make it very hard to carve out space for courses
that focus on topics such as performance evaluation.

To illustrate this, software engineering students at my uni-



versity only take one programming course in year 1! Year 2
has a 50-50 split between software (e.g., Java programming)
and non-software (e.g., optics and digital circuits) courses.
Consequently, students arrive in year 3 with a lot of ground
to cover in core software engineering (e.g., software design)
and computer science (e.g., operating systems) courses. In
the final year, students are required to take a project man-
agement course, complete a design project, and choose from
a list of elective courses that provide them an opportunity
to pursue specific interests.

Thus, a curriculum designer faces the difficult choice
of balancing between depth in software engineering and
breadth in other topics. In essence, there are only a lim-
ited number of slots available for core software engineering
and computer science courses and these are typically filled
with topics recommended in standard curriculums.

Finally, a crucial issue that needs to be addressed is stu-
dent buy-in for a course in performance evaluation. I have
been an undergrad curriculum administrator for a decade,
and I get to speak to students regularly. Most of them are
anxious to make up for the time they have spent taking non-
software courses. They prefer courses that will land them
their dream jobs. Not surprisingly, courses on data science
and game development, not performance evaluation, domi-
nate their thinking. When I offered performance evaluation
as an optional course for the first time several years ago,
student feedback was overall lukewarm. They felt it was a
very niche course and that it was ”grad” material. They
were somewhat put off by even the modest level math in the
course. Somewhat disturbingly, they felt that the material
was not relevant to them and that they do not see the course
knowledge being useful to them as practicing software engi-
neers.

Much to my satisfaction, a course in performance evalua-
tion was made mandatory in the software engineering pro-
gram at my university. My focus in the rest of the paper
is the key strategies I used to foster student interest while
teaching this course. Specifically, these strategies strive to
convince students that performance evaluation is a critical
topic that is going to be useful to them in industry. They
seek to emphasize practical skills that students can use in
their industrial practice.

3. COURSE CONTENTS
The course I teach is organized as follows. I start by

motivating the importance of performance using several in-
dustrial case studies. Then, to coax students to come out
of a functional mindset to a performance mindset, I review
some of the previous courses they have taken with a perfor-
mance lens. For example, I consider computer architecture
and discuss how things such as cache hierarchy, processor,
and memory organization impact performance. I talk about
multi-core architectures and the importance of software level
parallelism to take advantage of hardware parallelism. I dis-
cuss operating system level issues such as concurrency, syn-
chronization, and threading models and how they impact
performance.

Next, I switch to describing the software engineering life-
cycle and how performance analysis fits there. I introduce
different performance evaluation techniques such as analy-
sis, simulation, and measurements and discuss how these
techniques differ and complement each other. The rest of
the course focuses on two main aspects namely, modeling

and measurements. In modeling, I teach operational anal-
ysis and product form models. I also introduce some ad-
vanced modeling techniques, mainly Mean Value Analysis
(MVA) extensions to study queuing for software resources.
The final module emphasizes measurement concepts such
as workload modeling, load testing, and performance mon-
itoring. I also introduce experiment design and associated
statistical analyses.

4. STUDENT ENGAGEMENT STRATEGIES
On reflection, the main strategy I used is to explicitly mo-

tivate performance analysis and its importance to a practic-
ing software engineer. A particularly effective technique to
obtain student buy-in is to narrate case studies or situations
that I have encountered either in industry or in my industry-
oriented research projects. One of the case studies I narrate
early in the course was one I was personally involved in
while I was at HP Labs. This was a study where there was
a production Web site operated by a Fortune 100 company.
The Web site had horrendous performance problems such
as low throughput and high page load times. Initially, the
Web site’s engineers tried to throw hardware at the prob-
lem. They increased the system’s horizontal scaling but to
no avail. While space constraints preclude me from going
into the details, at a high level, the problem occurred due
to one method that had a very long critical section. When
the method was modified to have a shorter critical section,
the performance problems disappeared.

I use this case study to drive home several important
points to students. First, performance problems are real,
and they can have serious economic implications if left
unchecked. Second, I emphasize that just conducting func-
tional testing is not sufficient. The offending method in this
case passed functional tests but scaled very poorly and this
was not caught prior to deployment due to inadequate per-
formance testing. Finally, throwing hardware at the system
will not fix many performance problems. In this scenario,
the system was suffering from a software bottleneck. This
motivates the need to design systems that do not have such
insidious performance problems.

The next strategy I used is to complement narration of
case studies with active learning to promote student engage-
ment. Specifically, I describe a certain performance problem
and ask students to solve it in groups during the classroom.
For example, one of these sessions is based on a paper we
published on the scalability of a multi-core web server [2].
This exercise occurs during the part of the course where I es-
tablish linkages with computer architecture. In this session,
I give groups snippets of information such as the architecture
of the server we used, the concept of multiple sockets, mul-
tiple cores, local memory access, and socket inter-connect
bottlenecks. I then tell them that we installed an Apache
Web server on the system and noticed that the through-
put scaled linearly with cores when only cores from a single
socket were used. However, sublinear scaling was noticed
when cores from both sockets were allocated to the appli-
cation. Students are asked to brainstorm the source of the
bottleneck and techniques to mitigate it. Students typically
ask a lot of follow up questions but are in general able to
figure things out, which in this case relates to poor operat-
ing system scheduling decisions that trigger a socket inter-
connect bottleneck. Many groups correctly suggested that
running two Web server replicas with each replica pinned to



its own dedicated socket might mitigate this problem.
This exercise promotes student engagement with perfor-

mance evaluation in many ways. For example, it shows that
performance evaluation and debugging can be fun since it
resembles forensics. Furthermore, it reinforces the real-life
importance of performance analysis by highlighting the fact
that even production grade software (Apache) can have poor
scalability. Finally, it reiterates that throwing hardware (in
this case cores) at a system may not be effective in solv-
ing all performance problems. Careful design of software
components such as operating system schedulers combined
with thoughtful application configuration is crucial for fully
leveraging hardware level parallelism.

I also consciously prioritized applications over theory
given the overall objective of establishing industrial rele-
vance. Specifically, for the modeling part, I decided to
cover techniques that are mathematically simple yet have
good practical applications. So, operational laws and prod-
uct form models are the main modeling topics I cover in
the course. This is probably not an ideal choice. For exam-
ple, product form models have obvious limitations, which
might limit their applications in many real-world contexts.
However, I decided to trade off mathematical sophistication
for student buy-in and motivation. In keeping with this
strategy, the course focus is always on coming up with or
building a proper model for a given scenario rather than the
mechanics of solving the model. I allow students to use for-
mulae cheat sheets during exams and solvers for projects.
The emphasis is not on solving the model but rather on
coming up with the model. I also noticed that the wording
of assignment and exam problems can influence student en-
gagement. Problems should be worded to have a practical
flavour so that they come across as plausible scenarios that
could happen in practice.

The final strategy I emphasize is the building of strong
linkages between the lab and lecture components. While I
give students the freedom to propose their own performance
evaluation project, I introduce activities that force them to
apply concepts covered in lecture. For example, consider
a project that involves load testing. Students are required
to provide a rationale for the synthetic workloads selected.
They are directed to use operational laws to ensure that the
load test environment has been setup properly, e.g., verify
that measurements of the number of concurrent users, re-
sponse time, and throughput follow Little’s law. Students
are given exercises that show how operational laws can be
used to derive performance model parameters such as re-
source demands. Students are encouraged to build a model
of the system using the derived parameters and explore how
the model can be used to answer various “what-if” perfor-
mance questions. Students find this portion of the course
enjoyable due to its hands-on nature. The key idea is to in-
troduce activities within the project that demonstrate how
modeling approaches can complement measurement exer-
cises.

5. CONCLUDING REMARKS
While student feedback suggests that the strategies out-

lined here are effective, there remain several challenges that
need to be addressed. For example, in my opinion, the way
software engineering programs are typically structured leads
to siloed teaching efforts. Specifically, many programs have
standalone courses on requirements elicitation, design, ar-

chitecture, coding, functional testing, and performance anal-
ysis with no link to one another. Since all these activities are
inter-related, there is a need for more integrated teaching ef-
forts. For example, requirements gathering should include
performance requirements. Design should include building
models from design to see if the designs are likely to meet
performance requirements. Testing courses should also in-
troduce load testing to discuss aspects such as concurrency
and scalability.

There are other aspects that need a thoughtful discussion
in the SIGMETRICS community. For example, given the
prevalence of machine learning based performance models
in industry, how should queuing theory be introduced and
taught to undergrad students? How much emphasis should
be placed on theory given many students are intimidated by
the rigorous math involved in classical performance analy-
sis?
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ABSTRACT

Traditionally, computer systems are designed to optimize
classic notions of performance such as flow completion time,
cost, etc. The system performance is then typically evalu-
ated by characterizing theoretical bounds in worst-case set-
tings over a single performance metric. In the next gen-
eration of computer systems, societal design criteria, such
as carbon awareness and fairness, becomes a first-class de-
sign goal. However, the classic performance metrics may
conflict with societal criteria. Foundational understanding
and performance evaluations of systems with these inherent
trade-offs lead to novel research questions that could be con-
sidered new educational components for performance analy-
sis courses. The classic techniques, e.g., worst-case analysis,
for systems with conflicting objectives may lead to the im-
possibility of results. However, a foundational understand-
ing of the impossibility of results calls for new techniques
and tools. In traditional performance evaluation, to un-
derstand the foundational limits, typically, it is sufficient
to derive lower-bound arguments in worst-case settings. In
the new era of system design, lower bounds are inherently
about trade-offs between different objectives. Character-
izing these trade-offs in settings with multiple design cri-
teria is closer to the notion of Pareto-optimality, which is
drastically different from classic lower bounds. With the
impossibility of results using classic paradigms, one possi-
ble direction is to (re)design systems following the emerging
direction of learning-augmented algorithms. With this ap-
proach, it might be possible to remove/mitigate the founda-
tional conflict between classic vs. societal metrics using the
right predictions. However, the performance evaluation of
learning-augmented algorithms calls for a new set of techni-
cal questions, which we highlight in this paper.

1 Introduction

The traditional approach for algorithm design targets clas-
sic objective functions that model some notions of efficiency,
such as performance or cost. The performance of the pro-
posed algorithms is then typically analyzed by characteriz-
ing theoretical bounds, e.g., approximation ratio, competi-
tive ratio, regret, etc., in worst-case settings. With the wide
deployment of algorithmic ideas in society, it is essential to
systematically add societal criteria, such as fairness, car-
bon awareness, safety, privacy, etc., into the system design.
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However, the classic efficiency metrics may conflict with so-
cietal criteria in several scenarios. We outline two examples
of such conflicts in the context of fairness and carbon aware-
ness in computing systems.

Example 1: The trade-off between fairness and competi-
tiveness in the online knapsack problem. The online knap-
sack problem (OKP) [1, 2, 3] (formally introduced in Sec-
tion 2.2) is well-studied in the literature on online algo-
rithms. In its basic version of OKP, one provider allocates
a limited resource (i.e., the knapsack’s capacity) to users ar-
riving sequentially to maximize the total value of admitted
users. In OKP, as in many other online decision problems,
there is a trade-off between efficiency, i.e., maximizing the
value of the packed items, and fairness, i.e., ensuring equi-
table “treatment” for different items across some desirable
criteria [4]. To illustrate the importance of these considera-
tions in the context of OKP, it is perhaps best to start with
an example.

Consider a cloud computing resource accepting heteroge-
neous jobs online from clients sequentially. Each job in-
cludes a bid the user is willing to pay and the resource re-
quirement. The cloud resource is limited – there are not
enough resources to service all incoming requests. Consider
the quality of a job as the ratio of the bid price paid by
the client to the quantity of resources required for it. Note
that the limit on the resource implies that the problem of
accepting and rejecting items reduces precisely to the on-
line knapsack problem. If we cared only about the overall
quality of accepted jobs, we would intuitively be solving the
unconstrained online knapsack problem. However, simulta-
neously, it might be desirable for an algorithm to apply a
fair quality criteria to each job that arrives. But, adding fair
criteria will come at the expense of degrading competitive-
ness. In Section 4, we formally explore the trade-off between
fairness and competitiveness in this context.

Example 2: The trade-off between energy efficiency and
carbon efficiency. While the first example was concretely
about a specific problem, in the second example, we focus
on a more high-level trade-off concept. Motivating by the
goal of reducing the carbon footprint of computing systems,
recently, there has been attention to elevate the importance
of carbon efficiency—the ability to do more work when and
where low-carbon and clean energy is available—relative to
energy efficiency—the ability to do the most work for the
least amount of energy. While optimizing energy efficiency
has been a focus of research in sustainable computing for
decades, optimizing carbon efficiency is new and largely
under-explored. Technically speaking, optimizing carbon
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Figure 1: Trade-off between energy- vs. carbon-
efficiency.

efficiency is more closely related to the concept of energy
flexibility—the degree to which a workload can be shifted
temporally or spatially—than energy efficiency. The rela-
tionship between energy flexibility and energy efficiency may
conflict, i.e., increasing energy flexibility can decrease energy
efficiency [5]. A representative example in Figure 1 demon-
strates that by while a carbon-aware workload scheduling
decreases the carbon footprint by 11%, it increases the en-
ergy consumption by 18% (more details on setup and traces
in [5]). As another example, data centers are most energy-
efficient at high utilization, so leveraging their energy flex-
ibility to reduce carbon emissions by periodically reducing
their utilization and power usage makes them less energy-
efficient. Another example on theoretical understanding of
the trade-off between carbon and energy efficiency is studied
in [6].

More broadly, the addition of societal design objectives
could lead to multiple other conflicts, such as between safety
and regret in online learning [7, 8, 9], and other notions of
fairness and learning performance [10, 11].

Learning-augmented algorithms. Besides the emerging topic
of societal algorithms design, recently, there has been exten-
sive work on the systematic integration of algorithm design
with advice from machine learning. The main motivation is
that the classic algorithms (particularly online algorithms,
which are the focus of examples in this paper) designed
purely with guarantees of the worst-case performance tend
to ignore predictions outright. Thus they often have poor
performance in common average-case scenarios. In prac-
tice, however, for most application scenarios, abundant his-
torical data could be leveraged by machine learning (ML)
tools for generating some predictions of the unknown fu-
ture input, e.g., item values in the online knapsack problem.
Then, the possibility of leveraging ML predictions in algo-
rithmic design has led to the recent development of learning-
augmented algorithms [12, 13], where the goal is to leverage
predictions to improve the performance when predictions
are accurate and preserve the robust worst-case guarantees
when facing erroneous ML predictions. This high-level idea
has led researchers to revisit a wide range of online prob-
lems, including but not limited to caching [12], rent-or-buy
problems [13, 14, 15], facility location [16, 17], secretary
matching [18], metrical task systems [19], bin packing [20],
and beyond.

Consistency-robustness Trade-off in learning-augmented al-
gorithms. In the framework of learning-augmented algo-
rithms, there is a natural trade-off between consistency and
robustness [12], where consistency represents the competi-
tive ratio (formally defined in (1)) when the prediction is

accurate, and robustness is the competitive ratio regard-
less of the prediction error. The ultimate design goal is to
develop an algorithm that can achieve the Pareto-optimal
trade-off between consistency and robustness, i.e., no other
learning-augmented algorithms can simultaneously achieve
better consistency and robustness than the proposed algo-
rithm. A few examples regarding the Pareto-optimality are
for ski-rental problem [14], online conversion problem [21],
and online matching problem [22].

1.1 Paper Organization
The goal of the remaining sections of this paper is to provide
more concrete examples of the trade-off analysis in both so-
cietal algorithm design and learning-augmented algorithms
to further motivate the need for different notions of trade-
off analysis in the broader context of performance evaluation
courses. Towards this, in Section 2, we provide a brief back-
ground of online algorithms and introduce the online knap-
sack problem as the running example used in the rest of the
paper. Second, in Section 3, we present the consistency-
robustness trade-off analysis for learning-augmented online
knapsack algorithms. Third, in Section 4, we provide a
trade-off analysis between fairness and competitiveness for
a notion of time fairness in the knapsack problems. We pro-
vide concluding remarks in Section 5.

2 Background

In this section, we provide a brief background on competi-
tive online algorithms and then introduce the classic online
knapsack problem.

2.1 Online Algorithms
Decision-making under uncertainty is one of the most chal-
lenging issues that real-world computational problems face.
In the context of sustainable computing problems, for ex-
ample, questions like “will it be enough solar in the next few
hours to run the workload later?” to “which location will
have the lowest carbon intensity to move the workload?”,
cannot be answered reliably due to unpredictability of the
inputs. Competitive design [23, 24] is a remarkably suc-
cessful framework for tackling decision making under un-
certainty scenarios by developing worst-case optimized al-
gorithms. This framework assumes no stochastic modeling
of the input, and its ultimate goal is to devise algorithms
with the best possible competitive ratio. Competitive ratio
refers to the maximum ratio of the cost incurred by an on-
line algorithm A and the optimal cost incurred by solving
the problem in an offline manner under any feasible input
instance ω, i.e.,

CR(A) = max
ω∈Ω

cost(A(ω))

cost(opt(ω))
, (1)

where Ω is the set of all feasible instances, and cost(A(ω))
and cost(opt(ω)) are the cost of A and the offline opti-
mal cost under input ω. This framework has been success-
fully applied to numerous systems and networking appli-
cations such as TCP acknowledgement [25], renting cloud
servers [26], dynamic capacity provisioning of data centers [27,
28], energy optimization problems [29, 30, 15], scheduling [31,
32, 33, 34], to name a few.

In the next section, we introduce the online knapsack
problem and review the existing competitive algorithms with
optimal competitive ratios for this problem.



2.2 The Online Knapsack Problem
The online knapsack problem (OKP) is a classic problem that
has been studies extensively in the context of competitive
online algorithms. In the basic version of OKP, the goal is to
pack items that are arriving online into a knapsack with unit
capacity such that the aggregate value of admitted items is
maximized. In each round, item i ∈ [n] = {1, . . . , n}, with
value vi and weight wi, arrives, and an online algorithm
must decide whether to admit or reject i with the objec-
tive of maximizing the total value of selected items while
respecting the capacity. More formally, given items’ values
and weights {vi, wi}i∈[n], OKP can be formulated as

[OKP] max
∑

i∈[n] vixi,

s.t.,
∑

i∈[n] wixi ≤ 1,

vars., xi ∈ {0, 1}, i ∈ [n],

where the binary variable xi = 1 denotes the admission of
item i and xi = 0 represents a decline. In an online set-
ting, the admission decision xi for item i must be made
only based on the information of current and past items. It
is straightforward to show that without any assumptions on
the item value and weights, it is impossible to design online
algorithms with a bounded competitive ratio for the above
formulation of OKP [1]. Hence, in the literature [26, 1, 2, 3],
the following two standard assumptions are made to design
online algorithms with bounded competitive ratios.

Assumption 1. The weight of each individual item is much
smaller than the unit capacity of the knapsack, i.e., wi ≪
1,∀i ∈ [n].

Assumption 2. The value-to-weight ratio (or value den-
sity) of each item is lower and upper bounded between L and
U , i.e., L ≤ vi/wi ≤ U,∀i ∈ [n].

Assumption 1 naturally holds in large-scale systems where
the capacity of the entire system is way larger than individ-
ual requests. Assumption 2 is to eliminate the potential
for rare items that have extremely high or low-value den-
sities and again is reasonable from practical perspective.
This version of OKP has been used in numerous applica-
tions, including online cloud resource allocation [35, 36],
budget-constrained bidding in keyword auction [1], online
routing [37], and electric vehicle charging scheduling [38,
34, 39].
Prior work on OKP has resulted in an optimal deterministic

algorithm for the problem described above, shown by [1] in a
seminal work using the framework of online threshold-based
algorithms (OTA). In OTA, a carefully designed threshold func-
tion is used to facilitate the decisions made at each time
step. This threshold is specifically designed so that greedily
accepting inputs whose values meet or exceed the threshold
at each step provides a competitive guarantee. This algo-
rithmic framework has seen success in the related online
search and one-way trading problems [38, 40, 41] as well as
OKP [1, 2, 3].
The ZCL algorithm: Prior literature [1] proposed a de-

terministic threshold-based algorithm that achieves a com-
petitive ratio of ln(U/L) + 1. The authors also show that
this is the optimal competitive ratio for any deterministic
or randomized algorithm. We henceforth refer to this algo-
rithm as the ZCL algorithm. In the ZCL algorithm, items are

admitted based on the monotonically increasing threshold
function Φ(z) = (Ue/L)z (L/e), where z ∈ [0, 1] is the cur-
rent utilization. The jth item in the sequence is accepted
iff it satisfies vj/wj ≥ Φ(zj), where zj is the utilization at
the time of the item’s arrival. This algorithm is optimally
competitive [1, Theorems. 3.2, 3.3].

In what follows, we provide two examples of trade-off anal-
ysis for learning-augmented algorithms (in Section 3) and
societal algorithms (in Section 4) for the online knapsack
problem.

3 Learning-augmented Algorithms for the On-
line Knapsack Problem

In this section, we overview a recent consistency-robustness
trade-off results for the 1-max search problem [42], which
is a simplified version of the online knapsack problem. A
1-max search problem considers how to convert one asset
(e.g., dollars) to another (e.g., yens) over a trading period
[N ] := {1, . . . , N}. At the beginning of step n ∈ [N ], an
exchange rate (or price), vn, is announced, and a decision
maker must immediately determine the amount of dollars,
xn, to convert and obtains vnxn yens. The trading horizon
N is unknown to the decision maker, and if there are any
remaining dollars after N − 1 trading steps, all of them will
be compulsorily converted to yens at the last price vN . The
1-max search problem is a special case of OKP in the sense
of setting item sizes equal to the capacity of the knapsack
and the goal of picking the top most valuable item. If the
asset is allowed to convert fraction-by-fraction over multiple
transactions, the decision xn ∈ [0, 1] is a continuous vari-
able, and this fractional version is referred to as one-way
trading [43]. Similar to that of OKP, we assume the prices
{vn}n∈[N ] are bounded, i.e., vn ∈ [L,U ], ∀n ∈ [N ], where L
and U are known parameters, and define θ = U/L as the
price fluctuation.

The optimal algorithm for 1-max-search. There is a sim-
ple threshold-based algorithm, which determines a threshold
function as a constant Φ =

√
UL, where Φ is also called a

reservation price. Then the algorithm selects the first price
that is at least Φ. In [43], it has been shown that this algo-

rithm achieves the optimal competitive ratio
√
θ.

3.1 1-max search with prediction
In this section, we review an existing algorithm with a Pareto-
optimal trade-off between consistency-robustness for the 1-
max search problem. We refer to [21] for the full explanation
of the results. First, we assume that a prediction of the max-
imum price P is given to the learning-augmented algorithm.
The goal is to design the reservation price ΦP given a pre-
diction P . We denote η as the consistency and γ as the
robustness. set η := η(λ) and γ := γ(λ) as

γ(λ) = [
√

(1− λ)2 + 4λθ − (1− λ)]/(2λ), and η(λ) = θ/γ(λ),
(3)

where λ ∈ [0, 1] is the robustness parameter. In other words,
parameter λ determines the level of trust on prediction P ,
where λ = 0 means full trust; and λ = 1 means no trust at
all. and η and γ are predetermined parameters for designing
ΦP that represent the consistency and robustness that we
target to achieve. In particular, η and γ are designed as the



solution of

η(λ) = θ/γ(λ), and η(λ) = λγ(λ) + 1− λ. (4)

The first equation is the desired trade-off between robustness
and consistency and thus represents a Pareto-optimal trade-
off. The second equation sets η as a linear combination of 1
and γ. In this way, as λ increases from 0 to 1 , η increases
from the best possible ratio 1 to the optimal competitive
ratio

√
θ, and γ decreases from the worst possible ratio θ

to
√
θ. Taking η and γ as inputs, we design the reservation

price ΦP as follows:

when P ∈ [L,Lη), ΦP = Lη; (5a)

when P ∈ [Lη,Lγ), ΦP = λLγ + (1− λ)P/η; (5b)

when P ∈ [Lγ,U ], ΦP = Lγ. (5c)

The following theorem provides robustness and consis-
tency bounds for this algorithm.

Theorem 1. Given λ ∈ [0, 1], OTA with the reservation
price in Equation (5) for 1-max-search is γ(λ)-robust and
η(λ)-consistent, where γ(λ) and η(λ) are given in Equa-
tion (3).

Theorem 2. Any γ-robust learning-augmented online al-
gorithms for 1-max-search must have consistency η ≥ θ/γ.
Thus, the algorithm proposed with the reservation price (5)
is Pareto-optimal.

For additional insights on the algorithm design and Pareto-
optimal trade-off, we refer to [21]. Putting together the
results in the above two theorems, we conclude that the
consistency-robustness trade-off of the above algorithm is
Pareto-optimal. As a concluding remark for this section,
we further note that the Pareto-optimal trade-off analysis in
the context of learning-augmented algorithms is an emerging
topic, and to the best of our knowledge, finding a Pareto-
optimal learning-augmented algorithm for the general online
knapsack is still an open problem.

It is worth noting that the main purpose of presenting the
Pareto-optimality trade-off results was to highlight the con-
trast with respect to classic competitive analysis where the
optimality of results reduces to only showing a lower bound
on a single criterion instead of two (or multiple) criteria as
in learning-augmented algorithm design.

4 Trade-offs in Social Algorithm Design

To show the potential trade-offs between societal vs. clas-
sic design criteria in performance analysis of the algorithms,
we demonstrate the results in [4] as a running example. The
purpose of this example is just to provide an example of a
trade-off between fairness (as a societal criterion) and com-
petitiveness (as an efficiency metric). The high-level concept
could be applicable to other societal concerns such as carbon
awareness as we mentioned in the introduction.

4.1 Fairness in Online Knapsack Problems
In this section, we briefly explore this trade-off in the con-
text of the online knapsack problem. We refer to [4] for a
comprehensive statement of the results.

4.1.1 Trade-off Results
Fairness definition. The example in the introduction pre-
sented a specific type of time fairness that was explored in
the context of similar problems such as prophet inequali-
ties [44]. It is reasonable to ask that the probability of an
item’s admission into the knapsack should depend solely on
its value density x, and not on its arrival time j. We be-
gin by generalizing the definition of Time-Independent Fair-
ness proposed in [44] to OKP. Motivated by these results,
in Definition 3, we present a slightly revised notion, which
relaxes this constraint and narrows the scope of fairness to
consider items that arrive while the knapsack’s utilization
is in some subinterval of the knapsack’s capacity. In the
following, we formally define the notion of α-Conditional
Time-Independent Fairness (α-CTIF) for OKP.

Definition 3. For α ∈ [0, 1], an OKP algorithm ALG
is said to satisfy α-CTIF if there exists a subinterval A =
[a, b] ⊆ [0, 1] where b − a = α, and a function p : [L,U ] →
[0, 1] such that:

Pr

[
ALG accepts item j in I |

(
vj

wj
= x

)
∧ (zj + wj ∈ A)

]
= p(x),

∀I ∈ Ω, j ∈ [|I|], x ∈ [L,U ].

In particular, if α = 1, then A = [0, 1], and any item that
arrives while the knapsack still can admit it is considered.
Using Definition 3, in this section we present algorithms that
satisfy CTIF constraints while remaining competitive and
leveraging predictions for better performance. We start with
a result that captures the essence of the trade-offs inherent
to this problem.

Theorem 4. Any constant threshold-based algorithm for
OKP satisfies 1-CTIF. Furthermore, any constant threshold-
based deterministic algorithm for OKP cannot be better than
(U/L)-competitive.

We can now extend these results to general values of α.
Extended Constant Threshold (ECT). We define a thresh-

old function Φα(z) on the interval z ∈ [0, 1], where zj is
the knapsack utilization when the jth item arrives, and
α ∈ [1/(ln(U/L) + 1), 1] is the fairness parameter. Φα is
defined as follows:

Ψα(z) =

{
L z ∈ [0, α],

Ueβ(z−1) z ∈ (α, 1],
(6)

where β =
W

(
U(1−α)

Lα

)
1−α

. The following result shows the
achieved trade-off between fairness and competitiveness in
the above algorithm.

Theorem 5. ECT[α] satisfies α-CTIF. Furthermore, for
any instance I ∈ Ω, we have

OPT(I) ≤ ECT[α](I) ·
U [ln(U/L) + 1]

Lα[ln(U/L) + 1] + (U − L)(1− ℓ)
.

Thus, ECT[α] is U [ln(U/L)+1]
Lα[ln(U/L)+1]+(U−L)(1−ℓ)

-competitive. ECT[α],

in fact, exactly achieves the Pareto-optimal competitiveness
trade-off.

While the above results provide a tight trade-off between
fairness and competitiveness, in the following, we show how
to improve the trade-off by using simple predictions.



4.1.2 Learning-augmented Design Helps
Prediction model. Consider an offline approximation algo-
rithm APX for OKP, which sorts items by non-increasing
value density and packs them in this order. Let x ∈ [L,U ]
denote the smallest value density of any packed item, and V
is the total value obtained by APX. Then, if the total value
of items with value density x in the knapsack is ≥ V/2,
define d⋆ := x. Otherwise, define d⋆ := x+, where x+ is
the next highest value density in I. We assume that our
algorithm receives a single prediction d̂ ∈ [L,U ] for each

instance, where the prediction is perfect if d̂ = d⋆.
Learning-Augmented Extended Constant Threshold (LA-ECT).

Fix a trust parameter γ ∈ [0, 1]. We define the threshold

function Ψγ,d̂(z):

Ψγ,d̂(z) =


(Ue/L)

z
1−γ (L/e) z ∈ [0, κ],

d̂ z ∈ (κ, κ+ γ),

(Ue/L)
z−γ
1−γ (L/e) z ∈ [κ+ γ, 1],

(7)

where κ is the point where (Ue/L)(z/1−γ)(L/e) = d̂. Call
the resulting threshold algorithm LA-ECT[γ]. The following
theorem characterizes the fairness as well as the trade-off
between consistency and robustness for this algorithm.

Theorem 6. LA-ECT[γ] satisfies γ-CTIF. Also, for any
I ∈ Ω,

• For any accurate prediction v̂ ∈ [L,U ], we will have
ORACLE(I) ≤ LA-ECT[γ](I) · ϱ+2

γ
.

• For any prediction v̂ ∈ [L,U ], we have

OPT(I) ≤ LA-ECT[γ](I) · (1/1− γ) ln(U/L) + 1.

Thus, LA-ECT[γ] is
(

1
1−γ

ln(U/L) + 1
)
-robust. For most

instances, ϱ = O(1), and so LA-ECT[γ] is O(1/γ)-consistent.

The proposed learning-augmented algorithm substantially
improves the performance in practice, as shown in the exper-
iments in [4]. Hence, interestingly the learning-augmented
algorithm design paradigm is an appropriate tool to improve
the conflicting trade-offs between classic and societal design
criteria.

5 Concluding Remarks

In this paper, we highlighted two notions of trade-off anal-
ysis in the context of (1) learning-augmented algorithms
design, where the trade-off is between consistency and ro-
bustness; and (2) algorithms design with societal criteria,
e.g., fairness and carbon awareness, where the trade-off is
between classic performance notions, e.g., competitive ra-
tio, and societal metrics. Interestingly, leveraging learning-
augmented design could be considered as a potential tool to
improve the trade-offs in societal algorithm design. Lastly,
these trade-offs are inherent to both emerging topics and
could be considered as new teaching elements to classic per-
formance evaluations and algorithm design and analysis courses.
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ABSTRACT
How should we teach performance modeling without as-
suming a deep mathematical background? One approach is
to focus on rigorously studying relatively simple stochastic
models that do not require too much math background. But
this may leave students underprepared to reason about sys-
tems in practice. They have multiple servers, bursty arrivals,
heavy tails, and other features that demand more complex
stochastic models. Reasoning about these phenomena calls
for advanced tools from performance modeling theory, but
rigorously learning such tools requires more math background
than many computer science and engineering students have.
In my view, the main obstacle to teaching advanced theo-

retical tools is the mathematical rigor. I believe we can teach
such tools accessibly by dispensing with some of the rigor.
In this (opinionated!) abstract, I argue that students would
be well-served by advanced theoretical tools, and I outline
what teaching those tools with less rigor might look like.

1. THE NEED FOR ADVANCED MATH IN
PERFORMANCE MODELING

In my view, the main goals of performance modeling are to
describe and analyze systems in service of improving their
design. Math plays a critical role in both goals.
• We formally describe systems as mathematical models,
typically stochastic models.
• We analyze said models either in theory, using tools
from applied probability; or in simulation, in which
case probability and statistics help us decide what to
simulate and interpret results.

A typical path for performance modeling courses is to intro-
duce students to a mathematical modeling framework, then
teach strategies for analyzing models in that framework.

1.1 Markov Chains Fall Short
A modeling framework of choice for many texts on perfor-
mance modeling and stochastic processes is Markov chains
on discrete state spaces [4, 5, 12, 16, 23, 25, 30]. Markov
chains are appealing for several reasons.
• One can define and prove fundamental theorems about
Markov chains with elementary tools. For example,
on finite state spaces, one can define the transition
kernel as a matrix, and one can frame questions about

Copyright is held by author/owner(s).

convergence and mixing times in terms of linear algebra.

• One can often exactly analyze Markov chains with ele-
mentary tools. For example, while guessing a Markov
chain’s stationary distribution can be difficult, confirm-
ing a guess requires only checking balance equations.

This combination makes it feasible for students to learn
to define and exactly analyze Markov chain models fully
rigorously.
However, I see two main downsides to focusing a perfor-

mance modeling course around Markov chains. The first
downside is concrete: Markov chains have limited modeling
power. It is difficult to model queueing systems with general
service time distributions with Markov chains, outside of spe-
cific cases like the M/G/1 and G/M/1 where an embedded
discrete-time approach is possible. Phase-type distributions
can approximate general distributions, but their tails never
resemble power-law tails, which are ubiquitous in computer
systems and beyond [7, 22, 26, 31]. One can work around
this by adding more states to the Markov chain so that jobs
have infinitely many possible phases. But this yields Markov
chains that are challenging or impossible to exactly analyze.
This brings us to a second downside of focusing on Markov

chains: they tempt a focus on exact analysis, as opposed
to approximations or bounds. It is true that many Markov-
chain queueing models admit exact analysis, such as the
famously general Jackson networks [16]. But exact analysis is
intractable for most models, particularly multiserver models
like the M/G/k [11, 17]. Why do courses focus so heavily
on exact analysis? I suspect it is because exact analysis
is often easier than approximations. Verifying the balance
equations for Jackson networks, for example, is just algebra.
Approximately analyzing systems like the M/G/k requires
more advanced machinery [13, 27].
In summary: Markov chains are an appealing because they

can be taught fully rigorously without assuming an extensive
math background. But the set of Markov chains that can
be rigorously analyzed with only elementary tools is limited.
I believe this status quo can leave students unprepared to
reason about the systems they will encounter in practice.

1.2 Tools Students Need to Build and Analyze
Realistic Models

What features of practical systems might students need to
reason about, and what mathematical tools do they need to
do so? Below are four tools I think would prove useful, but
this is not an exhaustive list.
The first tool is general state spaces. Even very simple

models require complex state spaces. Consider an M/G/1



queue where we wish to track the remaining work of each
job. The system state is a list [r1, . . . , rn], where ri is the
remaining work of job i. The state space is thus

⊔∞
i=0 R

i
+,

which is not even finite-dimensional. Computer systems, with
their many layers of abstraction, have even more complicated
state spaces. For instance, a data center has many physical
servers, each of which hosts many virtual machines, each
of which runs many programs, each of which has its own
internal software state.
The second tool is drift of a system’s state, or the drift

of functions of the state. An especially important example
is drift of the total remaining work of all jobs in a system,
which is related to the system’s load. Drift is important
because they give students a first indication about how a
system might behave. For example, if load is greater than
the average work rate, the system will be unstable. Prac-
tical factors like parallelism [3] and garbage collection [14]
can make figuring out a computer system’s load difficult.
Learning to reason about drift is one way to understand
load and stability more broadly. Drift methods, as pioneered
by Eryilmaz and Srikant [10], are also one of the principal
tools queueing theorists have for approximately analyzing
otherwise intractable systems.
The third tool is expectations from varying perspectives.

There are many ways we might look at a system’s average
behavior, such as averaging over time, averaging over sample
paths, and averaging over jobs. Exactly which average is
appropriate depends on what metrics we are trying to analyze
in theory or measure in simulation. To name two recent
examples:

• Kumar et al. [18] investigate the degree to which web-
sites rely on a small number of centralized services, such
as content delivery networks. Much of their analysis
is in terms of website averages, namely the fraction
of websites from a given list satisfy a criterion. But
there are other types of averages that one could inves-
tigate. One example is website-visit averages, namely
the fraction of website visits that satisfy a criterion; or,
equivalently, a website average where each website is
weighted by the number of visits it gets.

• Atre et al. [1] design an algorithm for caching with
bursty requests. Types of averages that could be rel-
evant include time averages, request averages, and
request-burst averages. They use request-burst averages
in their algorithm, but one could imagine a different
average would yield different results, and it is not a
priori obvious which type of average is the right choice.

The fourth tool is large-scale approximations, such asmean-
field models. Today’s computer systems are certainly large-
scale, and mean-field models can quickly give some insight
into a large-scale system’s behavior. This insight might be
from numerically evaluating the mean-field model, or from
proving theorems about it. Famously, mean-field models
have been used to study dispatching [20]. I think mean-field
models could give students insight into metastability [9], a
phenomenon that is behind many recent failures in computer
systems [6, 14].

1.3 What Makes These Tools Advanced
All four of the tools above are typically considered mathe-
matically advanced. When taking a fully rigorous approach,
this is certainly the case.

• Studying stochastic processes on general state spaces
raises measure theoretic concerns.
• In continuous-time models, defining the drift of a Markov
process involves the process’s infinitesimal generator,
an operator whose domain is hard to define.
• Defining expectations from certain perspectives involves
what seems to be conditioning on a probability-zero
event. For example, one cannot simply define an arrival
average as a time average conditional on an arrival
occurring. Palm calculus [2] is a rigorous method of
overcoming this, but the formalism can be intimidating
even to experts (myself included!), let alone students.
• One typically derives mean-field models as infinite-size
limits of large but finite-size models. But this requires
reasoning about limits of stochastic processes and raises
concerns about when large-time and large-size limits
may be exchanged.

Teaching these tools rigorously thus seems infeasible in the
context of an engineering course.
My view is that the main thing that makes these tools

advanced is the rigor. I think there is a way to teach them
that dodges much of the rigor while still providing value to
students. This is the subject of the next section.

2. HOW WE MIGHT TEACH THE MATH
PERFORMANCE MODELING NEEDS

The conclusion of the previous section is that students would
be well served by advanced theoretical tools, but that there
is not time to teach them rigorously in the context of an
engineering course. The natural question is: how do we teach
such tools less rigorously? In this section, I outline the be-
ginnings of an approach for doing so. Given the amount of
hand-waving involved, I will refer to my proposed approach
using the acronym WAVE.
The main issue with hand-waving without a rigorous foun-

dation is that it can leave students unsure about exactly
when hand-waving is allowed. In WAVE, I hope to state
precise rules for hand-waving, which I refer to as principles
(as distinct from theorems), that work “most of the time”. To
help students solidify their understanding of when principles
apply, I plan to “prove” most principles in some way. This
may be by picture, by computation, or even by appeal to
empirical data. To further guide students, WAVE provides
some common patterns for applying principles, which I refer
to as recipes.
A downside of teaching using high-level principles and

recipes, as opposed to more rigorous low-level statements, is
that each individual topic might need many principles and
recipes. To get around this, I hope to focus WAVE on a small
number of flexible principles and recipes that can be applied
in many different contexts. The first step is to introduce a
flexible modeling framework to which those principles apply.

2.1 Model with Markov Processes
I propose we teach students to model systems as Markov pro-
cesses on general state spaces in either discrete or continuous
time. The discrete time version of this is not so different from
the current Markov chain approach. The main difference is
one of emphasis: rather than focusing attention on easily
tractable chains like birth-death processes, the main goal is
to capture the key dynamics of a system. A learning goal



for students should be to decide what aspects of a system
should be tracked as part of its state in order to fully specify
its transition dynamics.
I focus hereafter on continuous time, as that is the setting

where technical issues arise in a fully rigorous treatment. An
immediate question is: how should students specify the dy-
namics of a continuous-time Markov process? In WAVE, stu-
dents specify dynamics in an informal but clear pseudocode.
For example, Algorithm 2.1 below describes an M/G/1 with
arrival rate λ and job size distribution S, tracking the size
and attained service of each job as part of the state. There
are two ways the state can change: continuously, such as a
job being served; and through jumps, such as a job arriving
or departing. This is a natural way to describe piecewise-
deterministic Markov processes [8], and I suspect it will
suffice for most queueing applications.

Algorithm 2.1 M/G/1 Queue with Known Job Sizes

State: a list X = [(s1, a1), . . . , (sn, an)], where n ∈ N and
0 ≤ ai ≤ si for all i ∈ {1, . . . , n}
• si represents the size of job i
• ai represents the attained service of job i

Dynamics:
(A) Continuously while n ≥ 1:

Increase a1 at rate 1
(B) Jump at hazard rate λ:

Sample sn+1 from S
Set an+1 to 0
Append (sn+1, an+1) to X

(C) Jump when n ≥ 1 and a1 = s1:
Delete (s1, a1) from X (and shift indices)

The main choice students make when modeling a system
is what information to include in the system state. One
aspect of this choice is deciding what information should be
considered known or unknown. One can view Algorithm 2.1
as being an M/G/1 with known job sizes, because the job
sizes si are tracked in the system state. A variation with
unknown job sizes, which makes use of the hazard rate hS(·)
of the job size distribution, is given in Algorithm 2.2 below.

Algorithm 2.2 M/G/1 Queue with Unknown Job Sizes

State: a list X = [a1, . . . , an], where n ∈ N and ai ≥ 0 for
all i ∈ {1, . . . , n}
• ai represents the attained service of job i

Dynamics:
(A) Continuously while n ≥ 1:

Increase a1 at rate 1
(B) Jump at hazard rate λ:

Set an+1 to 0
Append an+1 to X

(C) Jump at hazard rate hS(a1):
Delete a1 from X (and shift indices)

Using pseudocode does not completely shield students
from learning math. For instance, hazard rates feature in
both Algorithms 2.1 and 2.2. But I believe some version of
pseudocode could be intuitive, especially to students with
programming background.

A question one might ask is what would need to be done to
rigorize pseudocode descriptions like Algorithms 2.1 and 2.2.
I suspect the main obstacle would be to formalize what
conditions are admissible for jumps. One would likely want
to check for non-explosiveness, meaning the process has
probability zero of having infinitely many jumps in a finite
time interval. I believe students can benefit from pseudocode
descriptions without worrying about explosiveness in most
cases.

2.2 Measure with Expectations from Varying
Perspectives

Having defined a system model, how should we define metrics
of interest, such as mean waiting time? WAVE is focused on
metrics that can be expressed in the form

E`[f(X)],

in which:
• X is the system state.
• f is some numerical function of the system state.
• E`[·] is a expectation from perspective `. We use the

letter ` because perspectives will often be lines or labels
in the pseudocode description of X’s evolution.1

I explain all three aspects in more detail below via two
examples. Both examples use the M/G/1 with known job
sizes from Algorithm 2.1. The metrics of interest are mean
waiting time and mean queue length.

We first consider mean waiting time. A job’s waiting time
as the amount of work in the system when it arrives, so we
start defining a function for the amount of work:

w
(
[(s1, a1), . . . , (sn, an)]

)
= (s1 − a1) + · · ·+ (sn − an).

That is, w(x) is the amount of work when the system is in
state x. The system state X evolves randomly over time, so
we write X(t) for the system state at time t. We suppose
the system runs for a very long time interval [0, T ]. If the
times jobs arrive are t1, . . . , tN , where N is the number of
arrivals in [0, T ], then the mean waiting time of jobs that
arrive during the interval is

1

N

N∑
i=1

w(X(ti)).

More generally, we define Earrival[f(X)] for function f to be

Earrival[f(X)] =
1

N

N∑
i=1

f(X(ti−)).

So mean waiting time is Earrival[w(X)].
We now consider mean queue length. We start by defining

a function for the queue length:

q
(
[(s1, a1), . . . , (sn, an)]

)
= (n− 1)+ = max{n− 1, 0}.

That is, q(x) is the number of jobs in the queue, not counting
the job in service, when the system is in state x. Mean queue
length is a time average, so we next define Earrival[f(X)] for
function f to be

Etime[f(X)] =
1

T

∫ T

0

f(X(t)) dt.

1Such expectations are sometimes called Palm expectations
in the literature [2, 21].



So mean queue length is Etime[q(X)].
Above, arrival and time are two examples of a perspectives.

A perspective is a way of taking a long-run average. I suspect
that most useful perspectives will be time and perspectives
associated with jump labels, meaning lines of pseudocode that
specify jumps. The arrival perspective is a special case of this:
Earrival[·] = E(B)[·], because (B) is the label corresponding
to arrivals in Algorithm 2.1. In general, for jump labels `,
we define E`[·] to be the average taken over the N` times
t`,1, . . . , t`,N` a jump occurs due to label `:

E`[f(X)] =
1

N`

N∑̀
i=1

f(X(t`,i−)).

One could imagine defining perspectives for continuous labels,
too. Again using Algorithm 2.1 as an example, (A) would be
the perspective of a busy system, meaning an average that
excludes times the server is idle. It is not yet clear to me
whether such perspectives would be useful.

2.3 Quantify with WAVE Equality
We have defined expectations as long run averages on a single
sample path X(t) for t ∈ [0, T ]. But we have not yet said
anything about the probability space underlyingX(t). WAVE
makes no explicit mention of probability spaces, instead
focusing on a single long sample path. How, then, can we use
probabilistic information, such as the fact that the number
of arrivals N during [0, T ] should be approximately λT?
Traditionally, we would use the law of large numbers to
deduce this.
Instead of defining a probability space, I propose we make

the law of large numbers an axiomatic principle, or a small
number of related principles. One such principle (or a special
case thereof) would say that when jumps occur at constant
hazard rate λ during a union of intervals of total length T ,
the number of jumps N is2

N ≈ λT.

In a rigorous presentation, the ≈ above would refer to a type
of convergence, such as almost sure convergence as T →∞.
Under WAVE, ≈ is a new equivalence relation which we call
WAVE equality.

Intuitively, WAVE equality means “equal enough for prac-
tical purposes if the sample path is long enough”. But there
is no direct definition of WAVE equality. The closest we
can get to giving a formal definition of WAVE equality is
to say it is defined inductively via principles. That is, the
only way to show that two quantities are WAVE-equal is to
use a principle, and two quantities are WAVE-equal if some
application of principles can show them to be. Of course, the
principles are informal, so this is still not a formal definition.
In WAVE, most interesting principles hold only under

WAVE equality, as opposed to ordinary equality. For example,
the WAVE version of Little’s law [19] is

Earrival[q(X)] ≈ λEtime[w(X)].

We will soon give an argument for Little’s law using WAVE.
Another example is the PASTA (Poisson Arrivals See Time
Averages) principle [32], whose WAVE version says that for

2It may be necessary to divide both sides by T , because
N − λT ≈ 0 seems more likely to lead to errors than
N/T − λ ≈ 0.

all functions f ,

Earrival[f(X)] ≈ Etime[f(X)].

2.4 Analyze with the Main WAVE Principle
Having defined metrics like mean waiting time and mean
queue length, how do we actually compute them? The start-
ing point is the main WAVE principle.3

For any function f , the long-run integral
∫ T

0
f(X(t)) dt

is WAVE-equal to any other sum or integral that
computes the same signed area, ignoring edge
effects.

WAVE’s name is a (somewhat clumsy) acronym for this
principle: When Averaging, Vilipend Edges.4 I hope defining
“edge effect” informally as “only affecting the area near times
0 and T ” will suffice. If needed, a more formal definition
could define it as a difference between the areas that scales
as o(T ) in the T → ∞ limit, but it remains unclear when
that actually holds.
To demonstrate the value of the main WAVE principle,

let us derive Little’s law for the M/G/1. The key idea, as
in the usual formal proof [19], is to look at

∫ T

0
q(X(t)) dt in

two ways. Recall our notation that N arrivals happen during
[0, T ] at times t1, . . . , tN .

• By definition,
∫ T

0
q(X(t)) dt = TEtime[q(X)].

• By definition,
∑N

i=1 w(X(ti−)) = NEarrival[w(X)].
By the main WAVE principle, thanks the usual trick of
“slicing horizontally”, these compute the same area modulo
edge effects, so

TEtime[q(X)] ≈ NEarrival[w(X)].

Finally, recall that N ≈ λT by a law of large numbers
principle, which yields Little’s law.
A close relative of the main WAVE principle is the rate

conservation law [21]. One can view it as saying that for any
function f ,

f(X(T ))− f(X(0))

T
≈ 0.

The power of the rate conservation law comes from expanding
the left-hand side as a combination of sums and integrals
which constitute all the changes in f(X). This can be done
in a systematic way, though it requires some more notation
(which we will not define formally). Consider again the M/G/1
from Algorithm 2.1. Each of the labels contributes one way
the state can change.
(A) Service yields Etime

[
1(length(X) ≥ 1) ∂a1f(X)

]
.

(B) Arrivals yield λEarrival

[
f
(
join(X, [(S, 0)])

)
− f(X)

]
.

(C) Departures yield λEdeparture

[
f
(
dropFirst(X)

)
−f(X)

]
.5

3As in the footnote about the law of large numbers, it may
be necessary to say that the areas are WAVE-equal only after
dividing by T .
4“Vilipend” means to regard something as having little value,
a fact I learned from a thesaurus while writing this abstract.
5Strictly speaking, one needs to show that the average de-
parture rate is λ. This is intuitive, but for a slightly more
detailed argument, one can first write this term with a dif-
ferent rate λdeparture. Applying the rate conservation law to
f(x) = length(X) then implies λdeparture ≈ λ.



The rate conservation law says that the sum of these three
terms is WAVE-equal to zero. One can carry out the same
process for essentially any pseudocode.
The rate conservation law is very powerful. Applying the

rate conservation law to f(x) = w(x) yields, after some
computation,

Etime[1(n(X) ≥ 1)] ≈ λE[S],

a well-known characterization of an M/G/1’s load. Applying
it to f(x) = 1

2
(w(x))2 yields, when combined with PASTA,

the PK formula for mean work:

Etime[w(X)] ≈
1
2
λE[S2]

1− λE[S]
.

The above derivations are specific instances of the first of
two more general recipes:
• To analyze E`[(f(X))p], try applying the rate conser-
vation law to (f(X))p+1.
• To analyze E`[exp(θf(X))], try applying the rate con-
servation law to exp(θf(X)).

Variants of these recipes are actually used in current queue-
ing research [15], including my own [28, 29]. For instance,
applying the recipe to the M/G/k, one obtains, roughly
speaking,

Etime[M/G/k work] = Etime[M/G/1 work]
+Eidle[M/G/k work],

provided the server speeds are scaled such that the M/G/1
and M/G/k have the same total server speed. While queue-
ing researchers then attempt to explicitly bound terms like
Eidle[M/G/k work], one still learns something from just that
expression. Whenever a server is idle in the M/G/k, there are
k− 1 or fewer jobs present, so Eidle[M/G/k work] is, roughly,
the “work of at most k − 1 jobs”.
One can use the main WAVE principle and rate conser-

vation law to prove other helpful principles. Among these
are the renewal-reward theorem [12] and its more advanced
cousin, the Palm inversion formula [2]. These are especially
helpful because they help relate expectations from different
perspectives to each other.

2.5 Unresolved Questions
There are, of course, many questions one would need to
answer before teaching a course using WAVE. Below are just
a few of these questions.
What does a full foundation for WAVE look like? What

other definitions, principles, and recipes do we need? Perhaps
we need principles that specify what counts as an edge effect.
It would be valuable to have recipes for building a mean-field
model given a model of one part’s dynamics. It may even
help to specify a more formal modeling language for writing
WAVE pseudocode. Languages for modeling cyber-physical
systems [24] could serve as inspiration.
For what audiences is WAVE most appropriate? I plan to

teach a small part of an undergraduate stochastic processes
course in a style similar to WAVE. Is this too ambitious? In
the other direction, could parts of WAVE, such as the idea
of expectations from varying perspectives, be valuable for
audiences that are even less technical?
What does WAVE lose by sacrificing rigor? Rigorous prob-

ability theory exists for a reason. What are the most impor-
tant dangers to look out for when proceeding non-rigorously?

Can we teach students to identify situations that require
extra attention to rigor? Considering this question might
help decide whether it is worth emphasizing the distinction
between WAVE equality ≈ and ordinary equality.
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