
The Role of Advanced Math in Teaching
Performance Modeling

Ziv Scully
Cornell University

School of Operations Research and Information Engineering

zivscully@cornell.edu

ABSTRACT
How should we teach performance modeling without as-
suming a deep mathematical background? One approach is
to focus on rigorously studying relatively simple stochastic
models that do not require too much math background. But
this may leave students underprepared to reason about sys-
tems in practice. They have multiple servers, bursty arrivals,
heavy tails, and other features that demand more complex
stochastic models. Reasoning about these phenomena calls
for advanced tools from performance modeling theory, but
rigorously learning such tools requires more math background
than many computer science and engineering students have.
In my view, the main obstacle to teaching advanced theo-

retical tools is the mathematical rigor. I believe we can teach
such tools accessibly by dispensing with some of the rigor.
In this (opinionated!) abstract, I argue that students would
be well-served by advanced theoretical tools, and I outline
what teaching those tools with less rigor might look like.

1. THE NEED FOR ADVANCED MATH IN
PERFORMANCE MODELING

In my view, the main goals of performance modeling are to
describe and analyze systems in service of improving their
design. Math plays a critical role in both goals.
• We formally describe systems as mathematical models,
typically stochastic models.
• We analyze said models either in theory, using tools
from applied probability; or in simulation, in which
case probability and statistics help us decide what to
simulate and interpret results.

A typical path for performance modeling courses is to intro-
duce students to a mathematical modeling framework, then
teach strategies for analyzing models in that framework.

1.1 Markov Chains Fall Short
A modeling framework of choice for many texts on perfor-
mance modeling and stochastic processes is Markov chains
on discrete state spaces [4, 5, 12, 16, 23, 25, 30]. Markov
chains are appealing for several reasons.
• One can define and prove fundamental theorems about
Markov chains with elementary tools. For example,
on finite state spaces, one can define the transition
kernel as a matrix, and one can frame questions about

Copyright is held by author/owner(s).

convergence and mixing times in terms of linear algebra.

• One can often exactly analyze Markov chains with ele-
mentary tools. For example, while guessing a Markov
chain’s stationary distribution can be difficult, confirm-
ing a guess requires only checking balance equations.

This combination makes it feasible for students to learn
to define and exactly analyze Markov chain models fully
rigorously.
However, I see two main downsides to focusing a perfor-

mance modeling course around Markov chains. The first
downside is concrete: Markov chains have limited modeling
power. It is difficult to model queueing systems with general
service time distributions with Markov chains, outside of spe-
cific cases like the M/G/1 and G/M/1 where an embedded
discrete-time approach is possible. Phase-type distributions
can approximate general distributions, but their tails never
resemble power-law tails, which are ubiquitous in computer
systems and beyond [7, 22, 26, 31]. One can work around
this by adding more states to the Markov chain so that jobs
have infinitely many possible phases. But this yields Markov
chains that are challenging or impossible to exactly analyze.
This brings us to a second downside of focusing on Markov

chains: they tempt a focus on exact analysis, as opposed
to approximations or bounds. It is true that many Markov-
chain queueing models admit exact analysis, such as the
famously general Jackson networks [16]. But exact analysis is
intractable for most models, particularly multiserver models
like the M/G/k [11, 17]. Why do courses focus so heavily
on exact analysis? I suspect it is because exact analysis
is often easier than approximations. Verifying the balance
equations for Jackson networks, for example, is just algebra.
Approximately analyzing systems like the M/G/k requires
more advanced machinery [13, 27].
In summary: Markov chains are an appealing because they

can be taught fully rigorously without assuming an extensive
math background. But the set of Markov chains that can
be rigorously analyzed with only elementary tools is limited.
I believe this status quo can leave students unprepared to
reason about the systems they will encounter in practice.

1.2 Tools Students Need to Build and Analyze
Realistic Models

What features of practical systems might students need to
reason about, and what mathematical tools do they need to
do so? Below are four tools I think would prove useful, but
this is not an exhaustive list.
The first tool is general state spaces. Even very simple

models require complex state spaces. Consider an M/G/1



queue where we wish to track the remaining work of each
job. The system state is a list [r1, . . . , rn], where ri is the
remaining work of job i. The state space is thus

⊔∞
i=0 R

i
+,

which is not even finite-dimensional. Computer systems, with
their many layers of abstraction, have even more complicated
state spaces. For instance, a data center has many physical
servers, each of which hosts many virtual machines, each
of which runs many programs, each of which has its own
internal software state.
The second tool is drift of a system’s state, or the drift

of functions of the state. An especially important example
is drift of the total remaining work of all jobs in a system,
which is related to the system’s load. Drift is important
because they give students a first indication about how a
system might behave. For example, if load is greater than
the average work rate, the system will be unstable. Prac-
tical factors like parallelism [3] and garbage collection [14]
can make figuring out a computer system’s load difficult.
Learning to reason about drift is one way to understand
load and stability more broadly. Drift methods, as pioneered
by Eryilmaz and Srikant [10], are also one of the principal
tools queueing theorists have for approximately analyzing
otherwise intractable systems.
The third tool is expectations from varying perspectives.

There are many ways we might look at a system’s average
behavior, such as averaging over time, averaging over sample
paths, and averaging over jobs. Exactly which average is
appropriate depends on what metrics we are trying to analyze
in theory or measure in simulation. To name two recent
examples:

• Kumar et al. [18] investigate the degree to which web-
sites rely on a small number of centralized services, such
as content delivery networks. Much of their analysis
is in terms of website averages, namely the fraction
of websites from a given list satisfy a criterion. But
there are other types of averages that one could inves-
tigate. One example is website-visit averages, namely
the fraction of website visits that satisfy a criterion; or,
equivalently, a website average where each website is
weighted by the number of visits it gets.

• Atre et al. [1] design an algorithm for caching with
bursty requests. Types of averages that could be rel-
evant include time averages, request averages, and
request-burst averages. They use request-burst averages
in their algorithm, but one could imagine a different
average would yield different results, and it is not a
priori obvious which type of average is the right choice.

The fourth tool is large-scale approximations, such asmean-
field models. Today’s computer systems are certainly large-
scale, and mean-field models can quickly give some insight
into a large-scale system’s behavior. This insight might be
from numerically evaluating the mean-field model, or from
proving theorems about it. Famously, mean-field models
have been used to study dispatching [20]. I think mean-field
models could give students insight into metastability [9], a
phenomenon that is behind many recent failures in computer
systems [6, 14].

1.3 What Makes These Tools Advanced
All four of the tools above are typically considered mathe-
matically advanced. When taking a fully rigorous approach,
this is certainly the case.

• Studying stochastic processes on general state spaces
raises measure theoretic concerns.
• In continuous-time models, defining the drift of a Markov
process involves the process’s infinitesimal generator,
an operator whose domain is hard to define.
• Defining expectations from certain perspectives involves
what seems to be conditioning on a probability-zero
event. For example, one cannot simply define an arrival
average as a time average conditional on an arrival
occurring. Palm calculus [2] is a rigorous method of
overcoming this, but the formalism can be intimidating
even to experts (myself included!), let alone students.
• One typically derives mean-field models as infinite-size
limits of large but finite-size models. But this requires
reasoning about limits of stochastic processes and raises
concerns about when large-time and large-size limits
may be exchanged.

Teaching these tools rigorously thus seems infeasible in the
context of an engineering course.
My view is that the main thing that makes these tools

advanced is the rigor. I think there is a way to teach them
that dodges much of the rigor while still providing value to
students. This is the subject of the next section.

2. HOW WE MIGHT TEACH THE MATH
PERFORMANCE MODELING NEEDS

The conclusion of the previous section is that students would
be well served by advanced theoretical tools, but that there
is not time to teach them rigorously in the context of an
engineering course. The natural question is: how do we teach
such tools less rigorously? In this section, I outline the be-
ginnings of an approach for doing so. Given the amount of
hand-waving involved, I will refer to my proposed approach
using the acronym WAVE.
The main issue with hand-waving without a rigorous foun-

dation is that it can leave students unsure about exactly
when hand-waving is allowed. In WAVE, I hope to state
precise rules for hand-waving, which I refer to as principles
(as distinct from theorems), that work “most of the time”. To
help students solidify their understanding of when principles
apply, I plan to “prove” most principles in some way. This
may be by picture, by computation, or even by appeal to
empirical data. To further guide students, WAVE provides
some common patterns for applying principles, which I refer
to as recipes.
A downside of teaching using high-level principles and

recipes, as opposed to more rigorous low-level statements, is
that each individual topic might need many principles and
recipes. To get around this, I hope to focus WAVE on a small
number of flexible principles and recipes that can be applied
in many different contexts. The first step is to introduce a
flexible modeling framework to which those principles apply.

2.1 Model with Markov Processes
I propose we teach students to model systems as Markov pro-
cesses on general state spaces in either discrete or continuous
time. The discrete time version of this is not so different from
the current Markov chain approach. The main difference is
one of emphasis: rather than focusing attention on easily
tractable chains like birth-death processes, the main goal is
to capture the key dynamics of a system. A learning goal



for students should be to decide what aspects of a system
should be tracked as part of its state in order to fully specify
its transition dynamics.
I focus hereafter on continuous time, as that is the setting

where technical issues arise in a fully rigorous treatment. An
immediate question is: how should students specify the dy-
namics of a continuous-time Markov process? In WAVE, stu-
dents specify dynamics in an informal but clear pseudocode.
For example, Algorithm 2.1 below describes an M/G/1 with
arrival rate λ and job size distribution S, tracking the size
and attained service of each job as part of the state. There
are two ways the state can change: continuously, such as a
job being served; and through jumps, such as a job arriving
or departing. This is a natural way to describe piecewise-
deterministic Markov processes [8], and I suspect it will
suffice for most queueing applications.

Algorithm 2.1 M/G/1 Queue with Known Job Sizes

State: a list X = [(s1, a1), . . . , (sn, an)], where n ∈ N and
0 ≤ ai ≤ si for all i ∈ {1, . . . , n}
• si represents the size of job i
• ai represents the attained service of job i

Dynamics:
(A) Continuously while n ≥ 1:

Increase a1 at rate 1
(B) Jump at hazard rate λ:

Sample sn+1 from S
Set an+1 to 0
Append (sn+1, an+1) to X

(C) Jump when n ≥ 1 and a1 = s1:
Delete (s1, a1) from X (and shift indices)

The main choice students make when modeling a system
is what information to include in the system state. One
aspect of this choice is deciding what information should be
considered known or unknown. One can view Algorithm 2.1
as being an M/G/1 with known job sizes, because the job
sizes si are tracked in the system state. A variation with
unknown job sizes, which makes use of the hazard rate hS(·)
of the job size distribution, is given in Algorithm 2.2 below.

Algorithm 2.2 M/G/1 Queue with Unknown Job Sizes

State: a list X = [a1, . . . , an], where n ∈ N and ai ≥ 0 for
all i ∈ {1, . . . , n}
• ai represents the attained service of job i

Dynamics:
(A) Continuously while n ≥ 1:

Increase a1 at rate 1
(B) Jump at hazard rate λ:

Set an+1 to 0
Append an+1 to X

(C) Jump at hazard rate hS(a1):
Delete a1 from X (and shift indices)

Using pseudocode does not completely shield students
from learning math. For instance, hazard rates feature in
both Algorithms 2.1 and 2.2. But I believe some version of
pseudocode could be intuitive, especially to students with
programming background.

A question one might ask is what would need to be done to
rigorize pseudocode descriptions like Algorithms 2.1 and 2.2.
I suspect the main obstacle would be to formalize what
conditions are admissible for jumps. One would likely want
to check for non-explosiveness, meaning the process has
probability zero of having infinitely many jumps in a finite
time interval. I believe students can benefit from pseudocode
descriptions without worrying about explosiveness in most
cases.

2.2 Measure with Expectations from Varying
Perspectives

Having defined a system model, how should we define metrics
of interest, such as mean waiting time? WAVE is focused on
metrics that can be expressed in the form

E`[f(X)],

in which:
• X is the system state.
• f is some numerical function of the system state.
• E`[·] is a expectation from perspective `. We use the

letter ` because perspectives will often be lines or labels
in the pseudocode description of X’s evolution.1

I explain all three aspects in more detail below via two
examples. Both examples use the M/G/1 with known job
sizes from Algorithm 2.1. The metrics of interest are mean
waiting time and mean queue length.

We first consider mean waiting time. A job’s waiting time
as the amount of work in the system when it arrives, so we
start defining a function for the amount of work:

w
(
[(s1, a1), . . . , (sn, an)]

)
= (s1 − a1) + · · ·+ (sn − an).

That is, w(x) is the amount of work when the system is in
state x. The system state X evolves randomly over time, so
we write X(t) for the system state at time t. We suppose
the system runs for a very long time interval [0, T ]. If the
times jobs arrive are t1, . . . , tN , where N is the number of
arrivals in [0, T ], then the mean waiting time of jobs that
arrive during the interval is

1

N

N∑
i=1

w(X(ti)).

More generally, we define Earrival[f(X)] for function f to be

Earrival[f(X)] =
1

N

N∑
i=1

f(X(ti−)).

So mean waiting time is Earrival[w(X)].
We now consider mean queue length. We start by defining

a function for the queue length:

q
(
[(s1, a1), . . . , (sn, an)]

)
= (n− 1)+ = max{n− 1, 0}.

That is, q(x) is the number of jobs in the queue, not counting
the job in service, when the system is in state x. Mean queue
length is a time average, so we next define Earrival[f(X)] for
function f to be

Etime[f(X)] =
1

T

∫ T

0

f(X(t)) dt.

1Such expectations are sometimes called Palm expectations
in the literature [2, 21].



So mean queue length is Etime[q(X)].
Above, arrival and time are two examples of a perspectives.

A perspective is a way of taking a long-run average. I suspect
that most useful perspectives will be time and perspectives
associated with jump labels, meaning lines of pseudocode that
specify jumps. The arrival perspective is a special case of this:
Earrival[·] = E(B)[·], because (B) is the label corresponding
to arrivals in Algorithm 2.1. In general, for jump labels `,
we define E`[·] to be the average taken over the N` times
t`,1, . . . , t`,N` a jump occurs due to label `:

E`[f(X)] =
1

N`

N∑̀
i=1

f(X(t`,i−)).

One could imagine defining perspectives for continuous labels,
too. Again using Algorithm 2.1 as an example, (A) would be
the perspective of a busy system, meaning an average that
excludes times the server is idle. It is not yet clear to me
whether such perspectives would be useful.

2.3 Quantify with WAVE Equality
We have defined expectations as long run averages on a single
sample path X(t) for t ∈ [0, T ]. But we have not yet said
anything about the probability space underlyingX(t). WAVE
makes no explicit mention of probability spaces, instead
focusing on a single long sample path. How, then, can we use
probabilistic information, such as the fact that the number
of arrivals N during [0, T ] should be approximately λT?
Traditionally, we would use the law of large numbers to
deduce this.
Instead of defining a probability space, I propose we make

the law of large numbers an axiomatic principle, or a small
number of related principles. One such principle (or a special
case thereof) would say that when jumps occur at constant
hazard rate λ during a union of intervals of total length T ,
the number of jumps N is2

N ≈ λT.

In a rigorous presentation, the ≈ above would refer to a type
of convergence, such as almost sure convergence as T →∞.
Under WAVE, ≈ is a new equivalence relation which we call
WAVE equality.

Intuitively, WAVE equality means “equal enough for prac-
tical purposes if the sample path is long enough”. But there
is no direct definition of WAVE equality. The closest we
can get to giving a formal definition of WAVE equality is
to say it is defined inductively via principles. That is, the
only way to show that two quantities are WAVE-equal is to
use a principle, and two quantities are WAVE-equal if some
application of principles can show them to be. Of course, the
principles are informal, so this is still not a formal definition.
In WAVE, most interesting principles hold only under

WAVE equality, as opposed to ordinary equality. For example,
the WAVE version of Little’s law [19] is

Earrival[q(X)] ≈ λEtime[w(X)].

We will soon give an argument for Little’s law using WAVE.
Another example is the PASTA (Poisson Arrivals See Time
Averages) principle [32], whose WAVE version says that for

2It may be necessary to divide both sides by T , because
N − λT ≈ 0 seems more likely to lead to errors than
N/T − λ ≈ 0.

all functions f ,

Earrival[f(X)] ≈ Etime[f(X)].

2.4 Analyze with the Main WAVE Principle
Having defined metrics like mean waiting time and mean
queue length, how do we actually compute them? The start-
ing point is the main WAVE principle.3

For any function f , the long-run integral
∫ T

0
f(X(t)) dt

is WAVE-equal to any other sum or integral that
computes the same signed area, ignoring edge
effects.

WAVE’s name is a (somewhat clumsy) acronym for this
principle: When Averaging, Vilipend Edges.4 I hope defining
“edge effect” informally as “only affecting the area near times
0 and T ” will suffice. If needed, a more formal definition
could define it as a difference between the areas that scales
as o(T ) in the T → ∞ limit, but it remains unclear when
that actually holds.
To demonstrate the value of the main WAVE principle,

let us derive Little’s law for the M/G/1. The key idea, as
in the usual formal proof [19], is to look at

∫ T

0
q(X(t)) dt in

two ways. Recall our notation that N arrivals happen during
[0, T ] at times t1, . . . , tN .

• By definition,
∫ T

0
q(X(t)) dt = TEtime[q(X)].

• By definition,
∑N

i=1 w(X(ti−)) = NEarrival[w(X)].
By the main WAVE principle, thanks the usual trick of
“slicing horizontally”, these compute the same area modulo
edge effects, so

TEtime[q(X)] ≈ NEarrival[w(X)].

Finally, recall that N ≈ λT by a law of large numbers
principle, which yields Little’s law.
A close relative of the main WAVE principle is the rate

conservation law [21]. One can view it as saying that for any
function f ,

f(X(T ))− f(X(0))

T
≈ 0.

The power of the rate conservation law comes from expanding
the left-hand side as a combination of sums and integrals
which constitute all the changes in f(X). This can be done
in a systematic way, though it requires some more notation
(which we will not define formally). Consider again the M/G/1
from Algorithm 2.1. Each of the labels contributes one way
the state can change.
(A) Service yields Etime

[
1(length(X) ≥ 1) ∂a1f(X)

]
.

(B) Arrivals yield λEarrival

[
f
(
join(X, [(S, 0)])

)
− f(X)

]
.

(C) Departures yield λEdeparture

[
f
(
dropFirst(X)

)
−f(X)

]
.5

3As in the footnote about the law of large numbers, it may
be necessary to say that the areas are WAVE-equal only after
dividing by T .
4“Vilipend” means to regard something as having little value,
a fact I learned from a thesaurus while writing this abstract.
5Strictly speaking, one needs to show that the average de-
parture rate is λ. This is intuitive, but for a slightly more
detailed argument, one can first write this term with a dif-
ferent rate λdeparture. Applying the rate conservation law to
f(x) = length(X) then implies λdeparture ≈ λ.



The rate conservation law says that the sum of these three
terms is WAVE-equal to zero. One can carry out the same
process for essentially any pseudocode.
The rate conservation law is very powerful. Applying the

rate conservation law to f(x) = w(x) yields, after some
computation,

Etime[1(n(X) ≥ 1)] ≈ λE[S],

a well-known characterization of an M/G/1’s load. Applying
it to f(x) = 1

2
(w(x))2 yields, when combined with PASTA,

the PK formula for mean work:

Etime[w(X)] ≈
1
2
λE[S2]

1− λE[S]
.

The above derivations are specific instances of the first of
two more general recipes:
• To analyze E`[(f(X))p], try applying the rate conser-
vation law to (f(X))p+1.
• To analyze E`[exp(θf(X))], try applying the rate con-
servation law to exp(θf(X)).

Variants of these recipes are actually used in current queue-
ing research [15], including my own [28, 29]. For instance,
applying the recipe to the M/G/k, one obtains, roughly
speaking,

Etime[M/G/k work] = Etime[M/G/1 work]
+Eidle[M/G/k work],

provided the server speeds are scaled such that the M/G/1
and M/G/k have the same total server speed. While queue-
ing researchers then attempt to explicitly bound terms like
Eidle[M/G/k work], one still learns something from just that
expression. Whenever a server is idle in the M/G/k, there are
k− 1 or fewer jobs present, so Eidle[M/G/k work] is, roughly,
the “work of at most k − 1 jobs”.
One can use the main WAVE principle and rate conser-

vation law to prove other helpful principles. Among these
are the renewal-reward theorem [12] and its more advanced
cousin, the Palm inversion formula [2]. These are especially
helpful because they help relate expectations from different
perspectives to each other.

2.5 Unresolved Questions
There are, of course, many questions one would need to
answer before teaching a course using WAVE. Below are just
a few of these questions.
What does a full foundation for WAVE look like? What

other definitions, principles, and recipes do we need? Perhaps
we need principles that specify what counts as an edge effect.
It would be valuable to have recipes for building a mean-field
model given a model of one part’s dynamics. It may even
help to specify a more formal modeling language for writing
WAVE pseudocode. Languages for modeling cyber-physical
systems [24] could serve as inspiration.
For what audiences is WAVE most appropriate? I plan to

teach a small part of an undergraduate stochastic processes
course in a style similar to WAVE. Is this too ambitious? In
the other direction, could parts of WAVE, such as the idea
of expectations from varying perspectives, be valuable for
audiences that are even less technical?
What does WAVE lose by sacrificing rigor? Rigorous prob-

ability theory exists for a reason. What are the most impor-
tant dangers to look out for when proceeding non-rigorously?

Can we teach students to identify situations that require
extra attention to rigor? Considering this question might
help decide whether it is worth emphasizing the distinction
between WAVE equality ≈ and ordinary equality.

ACKNOWLEDGMENTS
Many thanks to Vittoria de Nitto Personè and Y. C. Tay
for organizing TeaPACS and inviting me to participate in
its 2023 edition. Thanks to Runhan Xie for several helpful
discussions about his experience learning stochastic processes.
Finally, thanks to Mor Harchol-Balter, my former advisor,
for many discussions about teaching and presenting during
my PhD years.
This work was done in part while I was an NSF FODSI

postdoc at Harvard and MIT, supported by NSF grant nos.
DMS-2023528 and DMS-2022448.

References
[1] Nirav Atre, Justine Sherry, Weina Wang, and Daniel S.

Berger. 2020. Caching with Delayed Hits. In Proceedings
of the Annual Conference of the ACM Special Interest Group
on Data Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communication
(SIGCOMM 2020). ACM, Virtual Event, USA, 495–513.
doi:10.1145/3387514.3405883.

[2] François Baccelli and Pierre Brémaud. 2003. Elements of
Queueing Theory: Palm-martingale Calculus and Stochastic
Recurrences (2 ed.). Number 26 in Applications of Mathe-
matics. Springer, Berlin, Germany.

[3] Benjamin Berg. 2022. A Principled Approach to Parallel Job
Scheduling. Ph.D. Dissertation. Carnegie Mellon University,
Pittsburgh, PA.

[4] U. Narayan Bhat. 2008. An Introduction to Queueing Theory.
Birkhäuser, Boston, MA. doi:10.1007/978-0-8176-4725-4.

[5] Pierre Brémaud. 2020. Markov Chains: Gibbs Fields, Monte
Carlo Simulation and Queues (2 ed.). Number 31 in Texts in
Applied Mathematics. Springer, Cham, Switzerland.

[6] Nathan Bronson, Abutalib Aghayev, Aleksey Charapko, and
Timothy Zhu. 2021. Metastable Failures in Distributed Sys-
tems. In Proceedings of the Workshop on Hot Topics in
Operating Systems (HotOS 2021). ACM, Ann Arbor, MI,
221–227. doi:10.1145/3458336.3465286.

[7] Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman.
2009. Power-Law Distributions in Empirical Data. SIAM Rev.
51, 4 (Nov. 2009), 661–703. doi:10.1137/070710111.

[8] Mark H. A. Davis. 1984. Piecewise-Deterministic Markov
Processes: A General Class of Non-Diffusion Stochas-
tic Models. Journal of the Royal Statistical Society: Se-
ries B (Methodological) 46, 3 (July 1984), 353–376. doi:
10.1111/j.2517-6161.1984.tb01308.x.

[9] Jing Dong. 2022. Metastability in Queues. Queue-
ing Systems 100, 3-4 (April 2022), 413–415. doi:
10.1007/s11134-022-09795-2.

[10] Atilla Eryilmaz and R. Srikant. 2012. Asymptotically Tight
Steady-State Queue Length Bounds Implied by Drift Con-
ditions. Queueing Systems 72, 3 (Dec. 2012), 311–359. doi:
10.1007/s11134-012-9305-y.

[11] Varun Gupta, Mor Harchol-Balter, J. G. Dai, and
Bert Zwart. 2010. On the Inapproximability of M/G/K:
Why Two Moments of Job Size Distribution Are Not
Enough. Queueing Systems 64, 1 (Jan. 2010), 5–48. doi:
10.1007/s11134-009-9133-x.

[12] Mor Harchol-Balter. 2013. Performance Modeling and De-
sign of Computer Systems: Queueing Theory in Action. Cam-
bridge University Press, Cambridge, UK.

https://doi.org/10.1145/3387514.3405883
https://doi.org/10.1007/978-0-8176-4725-4
https://doi.org/10.1145/3458336.3465286
https://doi.org/10.1137/070710111
https://doi.org/10.1111/j.2517-6161.1984.tb01308.x
https://doi.org/10.1111/j.2517-6161.1984.tb01308.x
https://doi.org/10.1007/s11134-022-09795-2
https://doi.org/10.1007/s11134-022-09795-2
https://doi.org/10.1007/s11134-012-9305-y
https://doi.org/10.1007/s11134-012-9305-y
https://doi.org/10.1007/s11134-009-9133-x
https://doi.org/10.1007/s11134-009-9133-x


[13] Per Hokstad. 1978. Approximations for the M/G/m
Queue. Operations Research 26, 3 (1978), 510–523. doi:
10.1287/opre.27.6.1115.

[14] Lexiang Huang, Matthew Magnusson, Abishek Banga-
lore Muralikrishna, Salman Estyak, Rebecca Isaacs, Abu-
talib Aghayev, Timothy Zhu, and Aleksey Charapko. 2022.
Metastable Failures in the Wild. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
2022). USENIX, Carlsbad, CA, 73–90.

[15] Daniela Hurtado-Lange and Siva Theja Maguluri. 2020. Trans-
form Methods for Heavy-Traffic Analysis. Stochastic Systems
10, 4 (Dec. 2020), 275–309. doi:10.1287/stsy.2019.0056.

[16] Frank P. Kelly. 2011. Reversibility and Stochastic Networks
(revised ed.). Cambridge University Press, Cambridge, UK.

[17] John F. C. Kingman. 2009. The First Erlang Century—and
the Next. Queueing Systems 63, 1 (Nov. 2009), 3. doi:
10.1007/s11134-009-9147-4.

[18] Rashna Kumar, Sana Asif, Elise Lee, and Fabián E. Busta-
mante. 2023. Each at Its Own Pace: Third-Party Dependency
and Centralization around the World. Proceedings of the
ACM on Measurement and Analysis of Computing Systems
7, 1 (Feb. 2023), 1–29. doi:10.1145/3579437.

[19] John D. C. Little. 2011. Little’s Law as Viewed on Its 50th
Anniversary. Operations Research 59, 3 (June 2011), 536–549.
doi:10.1287/opre.1110.0940.

[20] Michael Mitzenmacher. 2001. The Power of Two Choices in
Randomized Load Balancing. IEEE Transactions on Parallel
and Distributed Systems 12, 10 (Oct. 2001), 1094–1104. doi:
10.1109/71.963420.

[21] Masakiyo Miyazawa. 1994. Rate Conservation Laws: A
Survey. Queueing Systems 15, 1 (March 1994), 1–58. doi:
10.1007/BF01189231.

[22] Jayakrishnan Nair, Adam Wierman, and Bert Zwart. 2022.
The Fundamentals of Heavy Tails: Properties, Emergence,
and Estimation. Number 53 in Cambridge Series in Statistical
and Probabilistic Mathematics. Cambridge University Press,
Cambridge, UK. doi:10.1017/9781009053730.

[23] James R. Norris. 1997. Markov Chains. Cambridge University
Press, Cambridge, UK. doi:10.1017/CBO9780511810633.

[24] André Platzer. 2018. Logical Foundations of Cyber-
Physical Systems. Springer, Cham, Switzerland. doi:
10.1007/978-3-319-63588-0.

[25] Sheldon M. Ross. 2014. Introduction to Probability Models
(11 ed.). Elsevier, Amsterdam, The Netherlands.

[26] Hiroshi Sasaki, Fang-Hsiang Su, Teruo Tanimoto, and Simha
Sethumadhavan. 2017. Why Do Programs Have Heavy Tails?.
In 2017 IEEE International Symposium on Workload Char-
acterization (IISWC 2017). IEEE, Seattle, WA, 135–145.
doi:10.1109/IISWC.2017.8167771.

[27] Alan Scheller-Wolf and Rein Vesilo. 2006. Structural
Interpretation and Derivation of Necessary and Suffi-
cient Conditions for Delay Moments in FIFO Multiserver
Queues. Queueing Systems 54, 3 (Nov. 2006), 221–232.
doi:10.1007/s11134-006-0068-1.

[28] Ziv Scully. 2022. A New Toolbox for Scheduling Theory. Ph.D.
Dissertation. Carnegie Mellon University, Pittsburgh, PA.

[29] Ziv Scully, Isaac Grosof, and Mor Harchol-Balter. 2020. The
Gittins Policy Is Nearly Optimal in the M/G/k under Ex-
tremely General Conditions. Proceedings of the ACM on
Measurement and Analysis of Computing Systems 4, 3, Arti-
cle 43 (Nov. 2020), 29 pages. doi:10.1145/3428328.

[30] Y. C. Tay. 2014. Analytical Performance Modeling for Com-
puter Systems (2 ed.). Morgan & Claypool, San Rafael, CA.

[31] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E. Haque,
Zhijing Gene Qin, Steven Hand, Mor Harchol-Balter, and
John Wilkes. 2020. Borg: The next Generation. In Proceed-
ings of the Fifteenth European Conference on Computer
Systems (EuroSys 2020). ACM, Heraklion Greece, 1–14.
doi:10.1145/3342195.3387517.

[32] Ronald W. Wolff. 1982. Poisson Arrivals See Time Averages.
Operations Research 30, 2 (1982), 223–231.

https://doi.org/10.1287/opre.27.6.1115
https://doi.org/10.1287/opre.27.6.1115
https://doi.org/10.1287/stsy.2019.0056
https://doi.org/10.1007/s11134-009-9147-4
https://doi.org/10.1007/s11134-009-9147-4
https://doi.org/10.1145/3579437
https://doi.org/10.1287/opre.1110.0940
https://doi.org/10.1109/71.963420
https://doi.org/10.1109/71.963420
https://doi.org/10.1007/BF01189231
https://doi.org/10.1007/BF01189231
https://doi.org/10.1017/9781009053730
https://doi.org/10.1017/CBO9780511810633
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1109/IISWC.2017.8167771
https://doi.org/10.1007/s11134-006-0068-1
https://doi.org/10.1145/3428328
https://doi.org/10.1145/3342195.3387517

	The Need for Advanced Math in Performance Modeling
	Markov Chains Fall Short
	Tools Students Need to Build and Analyze Realistic Models
	What Makes These Tools Advanced

	How We Might Teach the Math Performance Modeling Needs
	Model with Markov Processes
	Measure with Expectations from Varying Perspectives
	Quantify with WAVE Equality
	Analyze with the Main WAVE Principle
	Unresolved Questions


