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ABSTRACT

Traditionally, computer systems are designed to optimize
classic notions of performance such as flow completion time,
cost, etc. The system performance is then typically evalu-
ated by characterizing theoretical bounds in worst-case set-
tings over a single performance metric. In the next gen-
eration of computer systems, societal design criteria, such
as carbon awareness and fairness, becomes a first-class de-
sign goal. However, the classic performance metrics may
conflict with societal criteria. Foundational understanding
and performance evaluations of systems with these inherent
trade-offs lead to novel research questions that could be con-
sidered new educational components for performance analy-
sis courses. The classic techniques, e.g., worst-case analysis,
for systems with conflicting objectives may lead to the im-
possibility of results. However, a foundational understand-
ing of the impossibility of results calls for new techniques
and tools. In traditional performance evaluation, to un-
derstand the foundational limits, typically, it is sufficient
to derive lower-bound arguments in worst-case settings. In
the new era of system design, lower bounds are inherently
about trade-offs between different objectives. Character-
izing these trade-offs in settings with multiple design cri-
teria is closer to the notion of Pareto-optimality, which is
drastically different from classic lower bounds. With the
impossibility of results using classic paradigms, one possi-
ble direction is to (re)design systems following the emerging
direction of learning-augmented algorithms. With this ap-
proach, it might be possible to remove/mitigate the founda-
tional conflict between classic vs. societal metrics using the
right predictions. However, the performance evaluation of
learning-augmented algorithms calls for a new set of techni-
cal questions, which we highlight in this paper.

1 Introduction

The traditional approach for algorithm design targets clas-
sic objective functions that model some notions of efficiency,
such as performance or cost. The performance of the pro-
posed algorithms is then typically analyzed by characteriz-
ing theoretical bounds, e.g., approximation ratio, competi-
tive ratio, regret, etc., in worst-case settings. With the wide
deployment of algorithmic ideas in society, it is essential to
systematically add societal criteria, such as fairness, car-
bon awareness, safety, privacy, etc., into the system design.
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However, the classic efficiency metrics may conflict with so-
cietal criteria in several scenarios. We outline two examples
of such conflicts in the context of fairness and carbon aware-
ness in computing systems.

Example 1: The trade-off between fairness and competi-
tiveness in the online knapsack problem. The online knap-
sack problem (OKP) [1, 2, 3] (formally introduced in Sec-
tion 2.2) is well-studied in the literature on online algo-
rithms. In its basic version of OKP, one provider allocates
a limited resource (i.e., the knapsack’s capacity) to users ar-
riving sequentially to maximize the total value of admitted
users. In OKP, as in many other online decision problems,
there is a trade-off between efficiency, i.e., maximizing the
value of the packed items, and fairness, i.e., ensuring equi-
table “treatment” for different items across some desirable
criteria [4]. To illustrate the importance of these considera-
tions in the context of OKP, it is perhaps best to start with
an example.

Consider a cloud computing resource accepting heteroge-
neous jobs online from clients sequentially. Each job in-
cludes a bid the user is willing to pay and the resource re-
quirement. The cloud resource is limited – there are not
enough resources to service all incoming requests. Consider
the quality of a job as the ratio of the bid price paid by
the client to the quantity of resources required for it. Note
that the limit on the resource implies that the problem of
accepting and rejecting items reduces precisely to the on-
line knapsack problem. If we cared only about the overall
quality of accepted jobs, we would intuitively be solving the
unconstrained online knapsack problem. However, simulta-
neously, it might be desirable for an algorithm to apply a
fair quality criteria to each job that arrives. But, adding fair
criteria will come at the expense of degrading competitive-
ness. In Section 4, we formally explore the trade-off between
fairness and competitiveness in this context.

Example 2: The trade-off between energy efficiency and
carbon efficiency. While the first example was concretely
about a specific problem, in the second example, we focus
on a more high-level trade-off concept. Motivating by the
goal of reducing the carbon footprint of computing systems,
recently, there has been attention to elevate the importance
of carbon efficiency—the ability to do more work when and
where low-carbon and clean energy is available—relative to
energy efficiency—the ability to do the most work for the
least amount of energy. While optimizing energy efficiency
has been a focus of research in sustainable computing for
decades, optimizing carbon efficiency is new and largely
under-explored. Technically speaking, optimizing carbon
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Figure 1: Trade-off between energy- vs. carbon-
efficiency.

efficiency is more closely related to the concept of energy
flexibility—the degree to which a workload can be shifted
temporally or spatially—than energy efficiency. The rela-
tionship between energy flexibility and energy efficiency may
conflict, i.e., increasing energy flexibility can decrease energy
efficiency [5]. A representative example in Figure 1 demon-
strates that by while a carbon-aware workload scheduling
decreases the carbon footprint by 11%, it increases the en-
ergy consumption by 18% (more details on setup and traces
in [5]). As another example, data centers are most energy-
efficient at high utilization, so leveraging their energy flex-
ibility to reduce carbon emissions by periodically reducing
their utilization and power usage makes them less energy-
efficient. Another example on theoretical understanding of
the trade-off between carbon and energy efficiency is studied
in [6].

More broadly, the addition of societal design objectives
could lead to multiple other conflicts, such as between safety
and regret in online learning [7, 8, 9], and other notions of
fairness and learning performance [10, 11].

Learning-augmented algorithms. Besides the emerging topic
of societal algorithms design, recently, there has been exten-
sive work on the systematic integration of algorithm design
with advice from machine learning. The main motivation is
that the classic algorithms (particularly online algorithms,
which are the focus of examples in this paper) designed
purely with guarantees of the worst-case performance tend
to ignore predictions outright. Thus they often have poor
performance in common average-case scenarios. In prac-
tice, however, for most application scenarios, abundant his-
torical data could be leveraged by machine learning (ML)
tools for generating some predictions of the unknown fu-
ture input, e.g., item values in the online knapsack problem.
Then, the possibility of leveraging ML predictions in algo-
rithmic design has led to the recent development of learning-
augmented algorithms [12, 13], where the goal is to leverage
predictions to improve the performance when predictions
are accurate and preserve the robust worst-case guarantees
when facing erroneous ML predictions. This high-level idea
has led researchers to revisit a wide range of online prob-
lems, including but not limited to caching [12], rent-or-buy
problems [13, 14, 15], facility location [16, 17], secretary
matching [18], metrical task systems [19], bin packing [20],
and beyond.

Consistency-robustness Trade-off in learning-augmented al-
gorithms. In the framework of learning-augmented algo-
rithms, there is a natural trade-off between consistency and
robustness [12], where consistency represents the competi-
tive ratio (formally defined in (1)) when the prediction is

accurate, and robustness is the competitive ratio regard-
less of the prediction error. The ultimate design goal is to
develop an algorithm that can achieve the Pareto-optimal
trade-off between consistency and robustness, i.e., no other
learning-augmented algorithms can simultaneously achieve
better consistency and robustness than the proposed algo-
rithm. A few examples regarding the Pareto-optimality are
for ski-rental problem [14], online conversion problem [21],
and online matching problem [22].

1.1 Paper Organization
The goal of the remaining sections of this paper is to provide
more concrete examples of the trade-off analysis in both so-
cietal algorithm design and learning-augmented algorithms
to further motivate the need for different notions of trade-
off analysis in the broader context of performance evaluation
courses. Towards this, in Section 2, we provide a brief back-
ground of online algorithms and introduce the online knap-
sack problem as the running example used in the rest of the
paper. Second, in Section 3, we present the consistency-
robustness trade-off analysis for learning-augmented online
knapsack algorithms. Third, in Section 4, we provide a
trade-off analysis between fairness and competitiveness for
a notion of time fairness in the knapsack problems. We pro-
vide concluding remarks in Section 5.

2 Background

In this section, we provide a brief background on competi-
tive online algorithms and then introduce the classic online
knapsack problem.

2.1 Online Algorithms
Decision-making under uncertainty is one of the most chal-
lenging issues that real-world computational problems face.
In the context of sustainable computing problems, for ex-
ample, questions like “will it be enough solar in the next few
hours to run the workload later?” to “which location will
have the lowest carbon intensity to move the workload?”,
cannot be answered reliably due to unpredictability of the
inputs. Competitive design [23, 24] is a remarkably suc-
cessful framework for tackling decision making under un-
certainty scenarios by developing worst-case optimized al-
gorithms. This framework assumes no stochastic modeling
of the input, and its ultimate goal is to devise algorithms
with the best possible competitive ratio. Competitive ratio
refers to the maximum ratio of the cost incurred by an on-
line algorithm A and the optimal cost incurred by solving
the problem in an offline manner under any feasible input
instance ω, i.e.,

CR(A) = max
ω∈Ω

cost(A(ω))

cost(opt(ω))
, (1)

where Ω is the set of all feasible instances, and cost(A(ω))
and cost(opt(ω)) are the cost of A and the offline opti-
mal cost under input ω. This framework has been success-
fully applied to numerous systems and networking appli-
cations such as TCP acknowledgement [25], renting cloud
servers [26], dynamic capacity provisioning of data centers [27,
28], energy optimization problems [29, 30, 15], scheduling [31,
32, 33, 34], to name a few.

In the next section, we introduce the online knapsack
problem and review the existing competitive algorithms with
optimal competitive ratios for this problem.



2.2 The Online Knapsack Problem
The online knapsack problem (OKP) is a classic problem that
has been studies extensively in the context of competitive
online algorithms. In the basic version of OKP, the goal is to
pack items that are arriving online into a knapsack with unit
capacity such that the aggregate value of admitted items is
maximized. In each round, item i ∈ [n] = {1, . . . , n}, with
value vi and weight wi, arrives, and an online algorithm
must decide whether to admit or reject i with the objec-
tive of maximizing the total value of selected items while
respecting the capacity. More formally, given items’ values
and weights {vi, wi}i∈[n], OKP can be formulated as

[OKP] max
∑

i∈[n] vixi,

s.t.,
∑

i∈[n] wixi ≤ 1,

vars., xi ∈ {0, 1}, i ∈ [n],

where the binary variable xi = 1 denotes the admission of
item i and xi = 0 represents a decline. In an online set-
ting, the admission decision xi for item i must be made
only based on the information of current and past items. It
is straightforward to show that without any assumptions on
the item value and weights, it is impossible to design online
algorithms with a bounded competitive ratio for the above
formulation of OKP [1]. Hence, in the literature [26, 1, 2, 3],
the following two standard assumptions are made to design
online algorithms with bounded competitive ratios.

Assumption 1. The weight of each individual item is much
smaller than the unit capacity of the knapsack, i.e., wi ≪
1,∀i ∈ [n].

Assumption 2. The value-to-weight ratio (or value den-
sity) of each item is lower and upper bounded between L and
U , i.e., L ≤ vi/wi ≤ U,∀i ∈ [n].

Assumption 1 naturally holds in large-scale systems where
the capacity of the entire system is way larger than individ-
ual requests. Assumption 2 is to eliminate the potential
for rare items that have extremely high or low-value den-
sities and again is reasonable from practical perspective.
This version of OKP has been used in numerous applica-
tions, including online cloud resource allocation [35, 36],
budget-constrained bidding in keyword auction [1], online
routing [37], and electric vehicle charging scheduling [38,
34, 39].
Prior work on OKP has resulted in an optimal deterministic

algorithm for the problem described above, shown by [1] in a
seminal work using the framework of online threshold-based
algorithms (OTA). In OTA, a carefully designed threshold func-
tion is used to facilitate the decisions made at each time
step. This threshold is specifically designed so that greedily
accepting inputs whose values meet or exceed the threshold
at each step provides a competitive guarantee. This algo-
rithmic framework has seen success in the related online
search and one-way trading problems [38, 40, 41] as well as
OKP [1, 2, 3].
The ZCL algorithm: Prior literature [1] proposed a de-

terministic threshold-based algorithm that achieves a com-
petitive ratio of ln(U/L) + 1. The authors also show that
this is the optimal competitive ratio for any deterministic
or randomized algorithm. We henceforth refer to this algo-
rithm as the ZCL algorithm. In the ZCL algorithm, items are

admitted based on the monotonically increasing threshold
function Φ(z) = (Ue/L)z (L/e), where z ∈ [0, 1] is the cur-
rent utilization. The jth item in the sequence is accepted
iff it satisfies vj/wj ≥ Φ(zj), where zj is the utilization at
the time of the item’s arrival. This algorithm is optimally
competitive [1, Theorems. 3.2, 3.3].

In what follows, we provide two examples of trade-off anal-
ysis for learning-augmented algorithms (in Section 3) and
societal algorithms (in Section 4) for the online knapsack
problem.

3 Learning-augmented Algorithms for the On-
line Knapsack Problem

In this section, we overview a recent consistency-robustness
trade-off results for the 1-max search problem [42], which
is a simplified version of the online knapsack problem. A
1-max search problem considers how to convert one asset
(e.g., dollars) to another (e.g., yens) over a trading period
[N ] := {1, . . . , N}. At the beginning of step n ∈ [N ], an
exchange rate (or price), vn, is announced, and a decision
maker must immediately determine the amount of dollars,
xn, to convert and obtains vnxn yens. The trading horizon
N is unknown to the decision maker, and if there are any
remaining dollars after N − 1 trading steps, all of them will
be compulsorily converted to yens at the last price vN . The
1-max search problem is a special case of OKP in the sense
of setting item sizes equal to the capacity of the knapsack
and the goal of picking the top most valuable item. If the
asset is allowed to convert fraction-by-fraction over multiple
transactions, the decision xn ∈ [0, 1] is a continuous vari-
able, and this fractional version is referred to as one-way
trading [43]. Similar to that of OKP, we assume the prices
{vn}n∈[N ] are bounded, i.e., vn ∈ [L,U ], ∀n ∈ [N ], where L
and U are known parameters, and define θ = U/L as the
price fluctuation.

The optimal algorithm for 1-max-search. There is a sim-
ple threshold-based algorithm, which determines a threshold
function as a constant Φ =

√
UL, where Φ is also called a

reservation price. Then the algorithm selects the first price
that is at least Φ. In [43], it has been shown that this algo-

rithm achieves the optimal competitive ratio
√
θ.

3.1 1-max search with prediction
In this section, we review an existing algorithm with a Pareto-
optimal trade-off between consistency-robustness for the 1-
max search problem. We refer to [21] for the full explanation
of the results. First, we assume that a prediction of the max-
imum price P is given to the learning-augmented algorithm.
The goal is to design the reservation price ΦP given a pre-
diction P . We denote η as the consistency and γ as the
robustness. set η := η(λ) and γ := γ(λ) as

γ(λ) = [
√

(1− λ)2 + 4λθ − (1− λ)]/(2λ), and η(λ) = θ/γ(λ),
(3)

where λ ∈ [0, 1] is the robustness parameter. In other words,
parameter λ determines the level of trust on prediction P ,
where λ = 0 means full trust; and λ = 1 means no trust at
all. and η and γ are predetermined parameters for designing
ΦP that represent the consistency and robustness that we
target to achieve. In particular, η and γ are designed as the



solution of

η(λ) = θ/γ(λ), and η(λ) = λγ(λ) + 1− λ. (4)

The first equation is the desired trade-off between robustness
and consistency and thus represents a Pareto-optimal trade-
off. The second equation sets η as a linear combination of 1
and γ. In this way, as λ increases from 0 to 1 , η increases
from the best possible ratio 1 to the optimal competitive
ratio

√
θ, and γ decreases from the worst possible ratio θ

to
√
θ. Taking η and γ as inputs, we design the reservation

price ΦP as follows:

when P ∈ [L,Lη), ΦP = Lη; (5a)

when P ∈ [Lη,Lγ), ΦP = λLγ + (1− λ)P/η; (5b)

when P ∈ [Lγ,U ], ΦP = Lγ. (5c)

The following theorem provides robustness and consis-
tency bounds for this algorithm.

Theorem 1. Given λ ∈ [0, 1], OTA with the reservation
price in Equation (5) for 1-max-search is γ(λ)-robust and
η(λ)-consistent, where γ(λ) and η(λ) are given in Equa-
tion (3).

Theorem 2. Any γ-robust learning-augmented online al-
gorithms for 1-max-search must have consistency η ≥ θ/γ.
Thus, the algorithm proposed with the reservation price (5)
is Pareto-optimal.

For additional insights on the algorithm design and Pareto-
optimal trade-off, we refer to [21]. Putting together the
results in the above two theorems, we conclude that the
consistency-robustness trade-off of the above algorithm is
Pareto-optimal. As a concluding remark for this section,
we further note that the Pareto-optimal trade-off analysis in
the context of learning-augmented algorithms is an emerging
topic, and to the best of our knowledge, finding a Pareto-
optimal learning-augmented algorithm for the general online
knapsack is still an open problem.

It is worth noting that the main purpose of presenting the
Pareto-optimality trade-off results was to highlight the con-
trast with respect to classic competitive analysis where the
optimality of results reduces to only showing a lower bound
on a single criterion instead of two (or multiple) criteria as
in learning-augmented algorithm design.

4 Trade-offs in Social Algorithm Design

To show the potential trade-offs between societal vs. clas-
sic design criteria in performance analysis of the algorithms,
we demonstrate the results in [4] as a running example. The
purpose of this example is just to provide an example of a
trade-off between fairness (as a societal criterion) and com-
petitiveness (as an efficiency metric). The high-level concept
could be applicable to other societal concerns such as carbon
awareness as we mentioned in the introduction.

4.1 Fairness in Online Knapsack Problems
In this section, we briefly explore this trade-off in the con-
text of the online knapsack problem. We refer to [4] for a
comprehensive statement of the results.

4.1.1 Trade-off Results
Fairness definition. The example in the introduction pre-
sented a specific type of time fairness that was explored in
the context of similar problems such as prophet inequali-
ties [44]. It is reasonable to ask that the probability of an
item’s admission into the knapsack should depend solely on
its value density x, and not on its arrival time j. We be-
gin by generalizing the definition of Time-Independent Fair-
ness proposed in [44] to OKP. Motivated by these results,
in Definition 3, we present a slightly revised notion, which
relaxes this constraint and narrows the scope of fairness to
consider items that arrive while the knapsack’s utilization
is in some subinterval of the knapsack’s capacity. In the
following, we formally define the notion of α-Conditional
Time-Independent Fairness (α-CTIF) for OKP.

Definition 3. For α ∈ [0, 1], an OKP algorithm ALG
is said to satisfy α-CTIF if there exists a subinterval A =
[a, b] ⊆ [0, 1] where b − a = α, and a function p : [L,U ] →
[0, 1] such that:

Pr

[
ALG accepts item j in I |

(
vj

wj
= x

)
∧ (zj + wj ∈ A)

]
= p(x),

∀I ∈ Ω, j ∈ [|I|], x ∈ [L,U ].

In particular, if α = 1, then A = [0, 1], and any item that
arrives while the knapsack still can admit it is considered.
Using Definition 3, in this section we present algorithms that
satisfy CTIF constraints while remaining competitive and
leveraging predictions for better performance. We start with
a result that captures the essence of the trade-offs inherent
to this problem.

Theorem 4. Any constant threshold-based algorithm for
OKP satisfies 1-CTIF. Furthermore, any constant threshold-
based deterministic algorithm for OKP cannot be better than
(U/L)-competitive.

We can now extend these results to general values of α.
Extended Constant Threshold (ECT). We define a thresh-

old function Φα(z) on the interval z ∈ [0, 1], where zj is
the knapsack utilization when the jth item arrives, and
α ∈ [1/(ln(U/L) + 1), 1] is the fairness parameter. Φα is
defined as follows:

Ψα(z) =

{
L z ∈ [0, α],

Ueβ(z−1) z ∈ (α, 1],
(6)

where β =
W

(
U(1−α)

Lα

)
1−α

. The following result shows the
achieved trade-off between fairness and competitiveness in
the above algorithm.

Theorem 5. ECT[α] satisfies α-CTIF. Furthermore, for
any instance I ∈ Ω, we have

OPT(I) ≤ ECT[α](I) ·
U [ln(U/L) + 1]

Lα[ln(U/L) + 1] + (U − L)(1− ℓ)
.

Thus, ECT[α] is U [ln(U/L)+1]
Lα[ln(U/L)+1]+(U−L)(1−ℓ)

-competitive. ECT[α],

in fact, exactly achieves the Pareto-optimal competitiveness
trade-off.

While the above results provide a tight trade-off between
fairness and competitiveness, in the following, we show how
to improve the trade-off by using simple predictions.



4.1.2 Learning-augmented Design Helps
Prediction model. Consider an offline approximation algo-
rithm APX for OKP, which sorts items by non-increasing
value density and packs them in this order. Let x ∈ [L,U ]
denote the smallest value density of any packed item, and V
is the total value obtained by APX. Then, if the total value
of items with value density x in the knapsack is ≥ V/2,
define d⋆ := x. Otherwise, define d⋆ := x+, where x+ is
the next highest value density in I. We assume that our
algorithm receives a single prediction d̂ ∈ [L,U ] for each

instance, where the prediction is perfect if d̂ = d⋆.
Learning-Augmented Extended Constant Threshold (LA-ECT).

Fix a trust parameter γ ∈ [0, 1]. We define the threshold

function Ψγ,d̂(z):

Ψγ,d̂(z) =


(Ue/L)

z
1−γ (L/e) z ∈ [0, κ],

d̂ z ∈ (κ, κ+ γ),

(Ue/L)
z−γ
1−γ (L/e) z ∈ [κ+ γ, 1],

(7)

where κ is the point where (Ue/L)(z/1−γ)(L/e) = d̂. Call
the resulting threshold algorithm LA-ECT[γ]. The following
theorem characterizes the fairness as well as the trade-off
between consistency and robustness for this algorithm.

Theorem 6. LA-ECT[γ] satisfies γ-CTIF. Also, for any
I ∈ Ω,

• For any accurate prediction v̂ ∈ [L,U ], we will have
ORACLE(I) ≤ LA-ECT[γ](I) · ϱ+2

γ
.

• For any prediction v̂ ∈ [L,U ], we have

OPT(I) ≤ LA-ECT[γ](I) · (1/1− γ) ln(U/L) + 1.

Thus, LA-ECT[γ] is
(

1
1−γ

ln(U/L) + 1
)
-robust. For most

instances, ϱ = O(1), and so LA-ECT[γ] is O(1/γ)-consistent.

The proposed learning-augmented algorithm substantially
improves the performance in practice, as shown in the exper-
iments in [4]. Hence, interestingly the learning-augmented
algorithm design paradigm is an appropriate tool to improve
the conflicting trade-offs between classic and societal design
criteria.

5 Concluding Remarks

In this paper, we highlighted two notions of trade-off anal-
ysis in the context of (1) learning-augmented algorithms
design, where the trade-off is between consistency and ro-
bustness; and (2) algorithms design with societal criteria,
e.g., fairness and carbon awareness, where the trade-off is
between classic performance notions, e.g., competitive ra-
tio, and societal metrics. Interestingly, leveraging learning-
augmented design could be considered as a potential tool to
improve the trade-offs in societal algorithm design. Lastly,
these trade-offs are inherent to both emerging topics and
could be considered as new teaching elements to classic per-
formance evaluations and algorithm design and analysis courses.
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