
Performance evaluation teaching in the age of cloud
computing

Giuliano Casale
Department of Computing
Imperial College London

gcasale@ic.ac.uk

ABSTRACT
Cloud computing has been one of the most significant de-
velopments in computer science of the last two decades, fos-
tering sharp changes in performance engineering practices
across the computing industry and, at the same time, pro-
foundly steering research trends in academia. A distinctive
trait of this paradigm is that cloud engineers can program-
matically control application performance, raising an expec-
tation for computing graduates who find employment in soft-
ware and system development to have basic performance en-
gineering skills. This, in my view, calls for a broader and
deeper education on software and system performance topics
as part of the computing curriculum, while at the same time
requiring a rethink of the syllabus of a classic performance
evaluation module. This abstract presents my personal ex-
perience in doing so, including a discussion on the educa-
tional strengths and weaknesses of performance engineering
emerging from cloud computing practice.

1. INTRODUCTION
If we wish to reflect on how we should teach performance-
related topics in university modules, I believe a good place
to start is to ask ourselves what professional profiles can
leverage the methods and results developed in performance
evaluation and engineering (PE), and whether the way the
community teaches the discipline is appropriate in educating
students for these roles. Indeed, university education ulti-
mately has a mission to prepare students for their careers,
therefore such a reflection is in my view needed to avoid
designing modules based on personal preferences alone.

Several professions can surely make good use of the tools,
insights, and fundamental laws developed over the years by
the performance evaluation community. For example, net-
work traffic engineers can benefit from a deep understand-
ing of queueing theory and point processes. Similarly, data
scientists are often confronted with understanding complex
stochastic phenomena from data, a challenge that shares
similarities with performance measurement and workload
characterization. Simulation and modelling tools are widely
used by professionals in enterprise management and plan-
ning (e.g., logistics). Consultants need to design appropri-
ate workloads to find bottlenecks and determine the perfor-
mance limits of systems built by their customers. Classic
PE topics, such as stochastic modelling, performance mea-

Copyright is held by author/owner(s).

surement, and operational analysis, can therefore still un-
doubtedly play a role in shaping the minds and strengthen-
ing the preparation of our students for all these professions
and tasks. Yet, in this paper, I take a different view on the
suitability of classic PE teaching topics for educating stu-
dents who wish to understand performance in the context
of software systems. This is an important student group,
since software engineering is one of the topics that regularly
motivates students to choose computing degrees. In particu-
lar, I believe that academics who wish to tailor their courses
to prepare students to deal with software performance engi-
neering in the age of cloud computing should consider to:

1. reduce the prominence in PE modules of stochastic
modelling topics, part of which may still be taught
within other modules, such as probability and statis-
tics courses;

2. refresh the PE module syllabus with novel topics, prob-
lems, and examples emerging from cloud computing,
striking a balance with classic PE concepts and theory.

3. feature in the PE module a “hands-on” component
to foster a better understanding of real-world perfor-
mance issues that arise in cloud systems and tech-
niques available nowadays to monitor and dynamically
address such problems while the system is in operation.

The above recommendations are subjective views that re-
flect my personal experience in teaching PE for the last 15
years. The paper intends to expose my opinions and sug-
gestions in an informal way. I give in Section 3 an overview
of the evolution of PE teaching within the Department of
Computing at Imperial College London to illustrate an in-
stance where the above changes were applied in practice and
positively impacted student participation.

Concerning recommendation 1), stochastic modelling has
often been justified in the context of PE with a need to pre-
dict system behavior under unseen, or uncertain, operational
conditions. Problems such as capacity planning and design-
time software performance analysis have been put forward
to generations of students to motivate the need for PE. How-
ever, in my view, the whole idea of predicting the behavior
of complex software and services in advance of their deploy-
ment is less viable and widespread today than it used to be
at the time those earlier PE modules were designed. At the
heart of the issue lay various technological developments,
mostly related to cloud practices, which the paper discusses
in Section 2.



Stemming from the above, several classic stochastic tools
still taught in long-running PE modules, ranging fromMarkov
chains to queueing theory and Petri nets, appear somewhat
less relevant to me for professional practice in nowadays
cloud and software engineering practice. Recommendation
2) suggests that other subjects may be used to refresh the
PE module syllabus. As explained in Section 4, a number
of performance-related problems and topics emerging from
cloud computing may be used to replace, fully or partially,
the stochastic analysis subjects of a traditional PE mod-
ule. In many cases, such topics still offer space to integrate
classic PE notions into the lectures, allowing the module to
strike a balance between new and old PE content. Section 4
also elaborates on my teaching experience with these new
topics and their perceived value and shortcomings from an
educational standpoint.

Concerning recommendation 3, it is now routine for soft-
ware and service engineers to control software and system
performance programmatically, for example leveraging cloud
APIs to scale the compute and network resources avail-
able to an application. Moreover, leveraging the diffusion
of DevOps practices [1], changes to a cloud system are in-
creasingly often performed after its deployment, shifting the
emphasis of quality-of-service engineering from “correct de-
sign” to “problem fixing at runtime”. This state of play
raises, in my view, a need for computing graduates to re-
ceive, as part of their education, some basic training on how
to address performance problems for a live cloud system
while in operation. Configuring cloud auto-scaling may be
an example of a basic skill required by many employers.
This requires the ability in a student to reason on how the
capacity allocated to a software system should be varied dy-
namically to ensure that the desired level of performance
is maintained despite workload fluctuations. Auto-scaling
systems vary among different cloud platforms but, at least
in their basic implementations, they often require a limited
theoretical preparation, making them well suited for self-
contained lab exercises. Topics such as distributed tracing
and benchmarking are also well-suited to increase student
familiarity with these problems. In my view, lab compo-
nents can therefore enrich PE teaching and help convince
students to opt in for such modules through a better align-
ment with cloud engineering practice.

2. EDUCATING FOR THE PROFESSION
PE is a continuously evolving discipline, allowing us to look
back at its trajectory over the years to spot how today’s PE
differs from the one for which classic PE modules were de-
signed. As mentioned, since the majority of students seek
university education to prepare for a career in companies, I
believe it is important to look at the application of perfor-
mance concepts in a practical setting to steer the educational
offering proposed in academic PE modules.

One possible way to do so is to look at the notion of per-
formance discussed in practitioner events. The focus of this
section is therefore on observations on the evolution of the
Computing Measurement Group (CMG) [12], a prominent
community of performance practitioners. This community
featured at the height of its popularity several international
branches, which organized local events and brought together
several hundreds of people worldwide with a keen interest
in the topic of performance evaluation. The community
also ran the popular CMG conference for many decades,

which gathered contributions from industrial practitioners
and scholars in the PE field. In a typical year, the CMG con-
ference program would include presentations from experts
and capacity management teams, for example operating in
banks or in ICT consulting companies. Notably, despite
its practical scope, the event included presentations from
research scholars, demonstrating the presence of a healthy
interaction between the research and the practitioner com-
munities.

For a historical perspective on the notion of performance
discussed at these events, the reader may look at the sur-
vey in [12], which focuses on themes touched upon in the
1970s and 1980s. Taking CMG 2003 as a more recent exam-
ple, the conference mostly featured papers on mainstream
technology (e.g., Windows, DBMS, z/OS mainframes, . . . ),
capacity management methodologies (planning, ITIL, siz-
ing, measurement, QoS), and stochastic modeling (queueing,
simulation, forecasting), demonstrating, at least in the last
two topic areas, an overall good alignment with the themes
of both PE research and education of those days.

Let us now move forward 20 years to the present day.
The same organization now brands itself as a technology
community, featuring a more industrial composition. Topic-
wise, the conference program now focuses on more recent
infrastructure technologies (cloud databases, cloud servers,
containers, ...), observability (monitoring, distributed trac-
ing, ...), and AI (automated system configuration, opera-
tionalization, ...). Interestingly, aside for monitoring and
mainframes, few contributions overlap significantly with the
topics of older conference editions. From an educational
and research standpoint, it is striking in particular to see
a near absence of tools from classic PE theory, such as
Markov chains, queueing theory, but also a modest adop-
tion of simulation-driven analysis. Clearly, a dramatic shift
in PE practice has occurred over the last two decades. In my
opinion, this suggests that PE educators should take notice
of this change along the lines of recommendation 2 in the
introduction.

The reasons for such a shift in PE practice are surely
multiple. It may still be possible to conjecture on what
some of these might be so as to inform how PE education
should change as a result. To begin with, computer systems
are generally much more complex than in the early days of
PE, and basic analytical and simulation models tend to per-
form less accurately in complex systems than data-driven
AI models. AI models also take a black-box approach to the
problem that broadens their applicability, whereas stochas-
tic networks typically require some knowledge of how the
system works, and in this sense they are much more time-
consuming to develop, besides requiring skilled profession-
als.

There may also be several other reasons why classic PE
modeling tools are not as widespread as they used to be. For
example, if cloud engineers can quickly and cheaply correct
performance problems on-the-fly, allocating and removing
capacity in a matter of minutes, and thus the cost of re-
source allocation mistakes is low and easily fixable, reactive
methods in use in many cloud systems, albeit not perfect,
are sufficient for many companies. Moreover, if monitoring
is cheap, ubiquitous, and allows the observation at a high-
frequency of live distributed systems, steady-state analysis
via a model may be a less appealing way to characterize per-
formance than directly doing performance troubleshooting



on the running system. And even in situations where steady-
state predictions can be helpful, with applications that are
densely layered, built on top of a stack of platform services
and software-defined infrastructure (e.g., IaaS, containers,
JVMs, serverless, etc), such predictions may become brit-
tle, as the models can only characterize a small slice of the
overall system.

Summing up, the technological evolution driven by cloud
computing has shifted the attention of PE practitioners in
the software domain to observing systems in a live environ-
ment and to using AI models to reason on their performance.
The cost of applying hand-crafted performance models re-
mains high and companies face skill shortages of staff experts
in building such models. As suggested in the recommenda-
tions in the introduction, this warrants in my view a major
rethink of which PE topics should be taught in academia in
the perspective of better preparing students in computing
degrees towards careers in software and service engineering.

3. PERSONAL TEACHING EXPERIENCE
In many discussions I have had over the years with col-
leagues in the PE field, the subject of a perceived change
of tastes of the students in recent years has come up many
times. This circumstance is one that I have also observed
myself in the PE courses taught within the Department of
Computing at Imperial College London. The goal of this
section is therefore to give an example of how my PE teach-
ing has evolved in response to the challenges described in
the previous sections.

In the Department of Computing at Imperial College Lon-
don taught modules normally involve 28 hours of frontal
teaching, including both lectures and tutorials. The lat-
ter may be either in-class tutorials or lab sessions. Classes
in the last two years of the curriculum, where PE topics
are typically taught, include a mix of both undergraduate
and Master’s students. A short module duration of just 28
hours, which maps to a mere 4 hours a week for 7 weeks, is
not uncommon in the UK. It implies that module lecturers
need to carefully select their syllabus, as it would be diffi-
cult for example to present the content of an entire book in
such a short time span. Assessment is typically based on
coursework and a written exam.

A Performance Analysis module was taught for decades
in our department, which students could optionally select
in the last year of their studies. The Performance Analy-
sis module was focused on probabilistic modelling, with an
emphasis on Markov processes, queueing theory, and nu-
merical exercises. The course ran smoothly for many years
and students were generally keen (if not fascinated) to ex-
plore the mathematical techniques available for computer
system analysis, such as Markov processes, queueing sys-
tems, queueing networks, Petri nets, stochastic process al-
gebras, and others. However, the recent generations of com-
puting students showed a decreasing interest in stochastic
theory, possibly as a result of the factors outlined in the
previous sections and the concurrent rise of AI, which has
shifted the interest of those keen on mathematical modelling
onto subjects related to machine learning. A decision was
taken to end the long-running Performance Analysis mod-
ule in 2014, replacing it with a module with the title but,
due to other staffing needs, with half credits (14 hours of
frontal teaching) and an entirely new syllabus.

For the new course, which started in 2015, I decided to

soften the mathematical density of the module by switching
to a mean-value analysis (MVA) based PE teaching, cen-
tering the presentation on materials covered in the classic
PE book by Lazowska et al. [10], refreshed with real-world
examples from cloud computing research and industry. A
distinctive feature of Lazowska et al.’s book is the ability to
present essential performance analysis theory without enter-
ing either into a probabilistic description of the system or
formal proofs, but rather focusing only on operational anal-
ysis [3]. However, students kept demonstrating a limited
appetite for queueing theory even if this was presented in a
mathematically simpler form.

In the years that followed, I then looked to change my PE
teaching more fundamentally, significantly reducing the fo-
cus on stochastic modelling, and seeking a stronger case for
applicability and relevance to professional practice. This re-
sulted in much-improved participation and an overall higher
level of engagement from the students. The change consisted
mainly of the following modifications. Firstly, a new Per-
formance Engineering 28-hours module started in 2016 with
the syllabus focused on the intersections between PE with
cloud computing, but taking primarily a systems engineer-
ing and measurement view. The module wanted to retain
some methodological elements of classic PE (e.g., Markov
chains to describe user workload patterns). Moreover, this
was the first course in our department to teach hands-on
cloud computing basics to our students, including a lab-
based coursework that leveraged an educational sponsorship
from Microsoft Azure. In these lab sessions, the students
could learn the basics of instantiating and sizing VMs and
conducting benchmarking and workload characterization ex-
periments, followed by coursework centered on measurement
and autoscaling. This change introduced a practical side to
PE teaching that students really enjoyed. In a handful of
years, the module grew from 14 students in 2016 to 96 stu-
dents in 2020. Throughout this period, a colleague joined
me in teaching the module, introducing, among others, top-
ics related to cache performance and monitoring hardware
performance counters, further strengthening the exposure of
the students to systems performance.

At the same time of the above developments, I decided
to spread the more theoretical aspects of PE (e.g., Markov
chains, scheduling, point processes) horizontally across other
modules I taught. These included modules on probability
and statistics (2nd year), scheduling (3rd year), and simu-
lation (3rd year). My experience was that presenting top-
ics such as stochastic processes and queueing theory within
theoretically-focused modules that targeted a broader prob-
lem space then PE worked better in terms of the student
reception. I also noticed that exposing some performance
concepts only in a determining setting (e.g., deterministic
scheduling) worked better for many students than looking
at similar problems through a stochastic lens.

Summarizing, the recommendations provided in Section 1
may be seen as the key takeaways of the evolution of my
teaching discussed in this section. Evolving the Performance
Engineering module format with the inclusion of topics from
cloud computing allowed me to address what seemed a pro-
gressive decline in student numbers and interest in PE. Sev-
eral important topics that were traditionally taught in that
module, such as Poisson processes and queueing theory, have
then been spread horizontally across other modules in the
degree, obtaining a warmer reception, possibly also due to



a different composition of the student body.

4. TEACHING TOPICS
Leveraging the experience gained in teaching the modules
described in the last section, this section presents some rec-
ommendations for cloud-related topics that may be included
in a modern PE syllabus. My goal, in particular, is to re-
view topics that integrate well with classic PE materials,
allowing the lecturer to still teach several classic notions of
performance evaluation but in a renewed context.

4.1 Configuration optimization
The topic of configuration optimization deals with elaborat-
ing strategies to automatically tune the configuration pa-
rameters of a software system so as to maximize some per-
formance measures [7]. For example, in a Big data platform
such as Apache Storm, hundreds of configuration parameters
need to be assigned. Such parameters can profoundly influ-
ence the performance of cloud systems, which commonly
rely on these open-source platforms.

As traditional queueing theory models focus on a narrow
set of system parameters (e.g., number of service stations,
server multiplicities, service rates, . . . ), this topic allows the
students to develop a broader view of factors that affect per-
formance. The topic can also help them develop data-driven
modelling skills by looking at system response surfaces. The
topic is also useful to foster reasoning on how to find optimal
solutions from such surfaces.
Teaching benefits. In my experience, the configuration op-
timization topic is generally interesting to students, as it is
easily understandable and a useful skill to gain due to its
generality. A benefit of its teaching is that it has a tight
link to benchmarking, which can be used to gather the data
to fit the response surface. This then naturally leads to
cover in the module associate topics such as design of ex-
periments, the structure of a modern benchmark (such as
the SPEC benchmarks1), surrogate modelling, and regres-
sion model fitting. Books such as [9, 11, 8] offer excellent
source materials to develop lectures on the topic.

Another benefit of the topic is that it is fairly easy to set
up coursework or lab-based exercises. For example, students
may be asked to optimize a set of on/off options for a sys-
tem, e.g., enabling and disabling hyper-threading on a CPU
while observing the resulting performance changes of a ser-
vice, or changing the flags passed to a compiler, followed by
performance profiling of the compiled executable.
Teaching challenges. On the downside, this topic is rapidly
evolving in the state of the art, and thus may require fre-
quent updates to the slides. The analysis of surrogate re-
sponse surfaces to determine optimal system configuration
may also be best conducted if the students have some ma-
chine learning background (e.g., Gaussian processes) and a
basic understanding of related optimization methods (e.g.,
Bayesian optimization). The topic may also be somewhat
difficult to test in an exam setting, where limited data and
mathematical calculations can be expected.

4.2 Cloud deployment
Cloud computing systems are increasingly deployed by means
of declarative models of infrastructure resources, as in AWS

1https://www.spec.org/benchmarks.html

CloudFormation2 or OASIS TOSCA models3. An orchestra-
tor then takes in input such specifications and deploys the
application on the requested resources, instantiating them
on-the-fly on the cloud. Yet, the amount of resources re-
quested for an application is a controllable parameter that
the application owner needs to decide. This opens inter-
esting questions on how the performance engineer should
decide which and how many resources to allocate to the ap-
plication. This mindset brings into play questions similar to
capacity planning, but from a different angle.
Teaching benefits. Analytical models may be justified with
this problem as allowing to model performance within a
computational optimization program used to reach a re-
source allocation decision. In its simplest form, to avoid
the complications of stochastic models, this may be just a
linear program that depends on the utilization levels of the
resources, since operational analysis requires for these only
simple laws [3]. Where desired, methods to select specific
resource types (queue service rates), to respect service-level
agreements (e.g., response time distributions), or to account
for bare metal contention (e.g., multi-tenancy/multi-class)
may also be studied, if the chosen modelling formalism is
sufficiently expressive to address these problems.
Teaching challenges. Similarly to the configuration opti-
mization topic, also this topic has the drawback of assum-
ing some familiarity in the students with computational op-
timization methods, such as mixed-integer linear program-
ming. Describing multiclass systems may require additional
time and place additional complexities in explaining how to
parameterize the relevant models (e.g., regression-based es-
timation of service demands). Also in this case, setting up
exam questions that deal with computational optimization
formulations presents challenges, as the student cannot de-
rive by hand the solution at the exam. Assessment may be
therefore lab-based or limited to writing the optimization
program formulations without an explicit solution.

4.3 Autoscaling
As mentioned earlier, autoscaling is an essential topic for
cloud engineering [13, 6]. The topic can be integrated within
a PE module at varying degrees of sophistication (e.g., re-
active vs. proactive autoscaling). The topic also requires
the lecturer to introduce concepts of system transient and
steady-state, since the time for the system to settle after a
scaling decision is a parameter that affects the configuration
of some autoscaling rules. Autoscaling is also easy to couple
with load balancing topics, allowing again to integrate well
with materials from classic PE theory.
Teaching benefits. Several students displayed significant ex-
citement for the autoscaling topic in my modules and gen-
erated a follow-up demand for thesis supervision. The topic
is easily linked with mathematically-rich topics such as fore-
casting, scheduling, and control theory. Methods from fore-
casting such as autoregressive and moving-average processes
are appropriate for computing students as they require just
basic elements of conditional expectations and Gaussian dis-
tributions, and the fitting of small models (e.g., AR(1)) re-
quires simple algebraic formulas. Exposure to forecasting is
also helpful to students who seek to build a career in soft-
ware services for the financial industry. Such students are
common across university degrees in cities like London.

2https://aws.amazon.com/cloudformation/
3https://www.oasis-open.org/committees/tosca/



Teaching challenges. A first issue with this topic is that
if the content is presented using examples or lab exercises
based on specific cloud providers, then slides may need yearly
updates as autoscaling technologies and their interfaces evolve
rapidly. A second issue is that specific elements of the theory
are possibly too simple for a third- or fourth-year student
(e.g. rule-based autoscaling), also presenting a low level of
challenge in assessment. Lastly, a problem is that if the lec-
turer wishes to integrate elements from control theory upon
teaching the topic, for example as in [5], these require theo-
retical baselines that may not be available to all computing
students (e.g., Laplace and Z-transforms).

4.4 Serverless workflows
Serverless computing has been a prominent cloud comput-
ing trend for a number of years. Within it, Function-as-a-
Service (FaaS) allows users to execute functions remotely in
the cloud [4]. By enabling fine-grained autoscaling, FaaS
offers a systematic advantage over traditional web services
for enabling a scalable execution of scientific and business
workflows in the cloud.

Serverless workflows may be used to teach various PE top-
ics. Taking the user perspective, the module can introduce
scheduling in the presence of workflows, resorting for exam-
ple to the large body of literature available on deterministic
scheduling [2], possibly in a lighter (albeit less rigorous) form
than in algorithm theory courses devoted to the subject.

From the FaaS platform perspective, the PE module may
touch upon heuristics, such as bin packing, that the platform
may use to consolidate different serverless functions across
server machines. The effects of memory constraints on per-
formance are also an interesting topic aligned to serverless.
Workflows are also useful to introduce the notion of a dead-
line, since they are often used to support critical end-of-
month financial calculations in many businesses.
Teaching benefits. The topic has excellent appeal to stu-
dents, who see its importance in the real world and the
timeliness with respect to ongoing cloud computing trends.
When coupled with scheduling theory concepts, the topic al-
lows the lecturer to develop in the class a basic understand-
ing of important general concepts such as NP-hardness, from
which it is easy to pair the module with exercises involv-
ing metaheuristics (e.g., stochastic annealing, local search),
which in my teaching experience generate a positive response
in a computing class. It is also simple to define serverless
scheduling problems in the coursework. My taught modules
feature a workflow scheduling system for Azure Function
that is supplied to the students. The exercises often involve
studying some completion time minimization problems by
developing a workflow schedule that is executed through this
system. This generally has a good reception in the class as
it combines both technological and theoretical elements.
Teaching challenges. One limitation of the serverless work-
flow topic is the limited number of optimal methods for gen-
eral workflow scheduling [2]. Albeit several heuristics exist,
this limits the appeal of the theory that can be developed in
class. Moreover, real-world workflows can feature complex
synchronization and be trigger-based and data-driven, which
may introduce excessive complexity for modelling purposes.
Lastly, workflow scheduling problems that are not solvable
by brute force require tens of function calls. This may sig-
nificantly extend the time required to solve coursework ex-
ercises by experimental means.

5. CONCLUSION
In conclusion, the advent of cloud computing offers an op-
portunity to refresh several contents of performance evalu-
ation modules. In the early years of the performance com-
munity, there was general agreement on the importance of
having a unified discipline centered around topic such as
queueing theory. However, many more tools are available
nowadays to study the performance of complex computing
systems and performance evaluation teaching should evolve
as a result. A review discussion has been presented on top-
ics and techniques emerging from cloud engineering practice
that may be added to the syllabus of a performance evalu-
ation module, together with reflections on their educational
merits and shortcomings.

6. REFERENCES
[1] A. Alnafessah, A. U. Gias, R. Wang, L. Zhu,

G. Casale, and A. Filieri. Quality-aware devops
research: Where do we stand? IEEE access,
9:44476–44489, 2021.

[2] K. R. Baker and D. Trietsch. Principles of sequencing
and scheduling. John Wiley & Sons, 2013.

[3] P. J. Denning and J. P. Buzen. The operational
analysis of queueing network models. ACM Computing
Surveys (CSUR), 10(3):225–261, 1978.

[4] S. Eismann, J. Scheuner, E. Van Eyk, M. Schwinger,
J. Grohmann, N. Herbst, C. L. Abad, and A. Iosup. A
review of serverless use cases and their characteristics.
arXiv preprint arXiv:2008.11110, 2020.

[5] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M.
Tilbury. Feedback control of computing systems. John
Wiley & Sons, 2004.

[6] N. R. Herbst, S. Kounev, and R. Reussner. Elasticity
in cloud computing: What it is, and what it is not. In
10th international conference on autonomic computing
(ICAC 13), pages 23–27, 2013.

[7] P. Jamshidi and G. Casale. An uncertainty-aware
approach to optimal configuration of stream
processing systems. In 2016 IEEE 24th International
Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems
(MASCOTS), pages 39–48. IEEE, 2016.

[8] A. I. Khuri and J. A. Cornell. Response surfaces:
designs and analyses. Routledge, 2018.

[9] S. Kounev, K.-D. Lange, and J. Von Kistowski.
Systems Benchmarking. Springer, 2020.

[10] E. D. Lazowska, J. Zahorjan, G. S. Graham, and
K. C. Sevcik. Quantitative system performance:
computer system analysis using queueing network
models. Prentice-Hall, Inc., 1984.

[11] D. J. Lilja. Measuring computer performance: a
practitioner’s guide. Cambridge university press, 2005.

[12] T. L. Lo. The evolution of workload management in
data processing industry: a survey. In Proceedings of
1986 ACM Fall joint computer conference, pages
768–777, 1986.

[13] B. Wilder. Cloud architecture patterns: using
microsoft azure. ” O’Reilly Media, Inc.”, 2012.


