
Teaching Software Performance Evaluation to Undergrads:
Lessons Learned and Challenges

Diwakar Krishnamurthy
University of Calgary

dkrishna@ucalgary.ca

ABSTRACT
Recent high-profile performance-related outages and prob-

lems in industry clearly establish the importance of impart-
ing performance evaluation skills to students at the under-
grad level. Yet, performance engineering is rarely a required
course in most software engineering programs around the
world. The typical undergrad student is naturally drawn to-
wards coding courses and courses on topics that they think
are likely to be in demand in industry, e.g., data science.
While sympathetic, curriculum designers often cite student
pressures and other factors such as accreditation require-
ments from engineering bodies to argue against mandating
a performance evaluation course. As a long time instructor
of a mandatory, undergrad software performance evaluation
course, I describe some of my experiences operating in such a
climate. Specifically, I outline key strategies I have followed
to motivate students and overcome their resistance to the
somewhat analytical nature of performance analysis. I also
offer my observations on how undergrad curriculums can be
tuned to instil a performance-aware mindset into students.
Finally, I point out ongoing challenges to stimulate future
solutions.

1. INTRODUCTION
Performance considerations are critical in real-world soft-

ware systems. Recently, there have been many instances of
systems failing because performance considerations were not
addressed adequately. A well-known example is the failure
of the heathcare.gov Web site, which was plagued by many
problems including poor performance. For example, there
were reports that the Web site could not even handle 500
concurrent users when it went live [1]. More recently, perfor-
mance problems have affected even Fortune 100 companies
that have access to large scale computational resources and
state of the art scaling techniques [3].

Since ignoring performance considerations can clearly
have adverse real-world implications, it is imperative that
organizations have access to engineers with performance
evaluation skills. Specifically, organizations need person-
nel that can design systems that reduce the likelihood of
operational problems related to performance. They need
engineers who can build effective scaling strategies and who
can trouble shoot performance problems on the rare occa-
sions they occur.

Unfortunately, most organizations hire undergrads [5] and

Copyright is held by author/owner(s).

most undergrad software engineering curriculums do not
prescribe mandatory performance evaluation courses. Per-
formance courses are more common at the graduate level.
Some universities may offer a performance course at the un-
dergrad level, but such offerings are typically not manda-
tory. In effect, we as educators are leaving performance-
related training to chance. I argue that this is quite reckless
given how critical the topic is!

In the remainder of the paper, I discuss the main chal-
lenges in including performance evaluation courses in under-
graduate software engineering curriculums. I will then focus
on one of these challenges – student buy-in. I will describe
some strategies I have observed to be effective in getting stu-
dents interested in performance evaluation. Finally, I will
present a discussion of open pedagogical problems that need
to be addressed by the SIGMETRICS community.

2. PERFORMANCE EDUCATION AT UN-
DERGRAD LEVEL: CHALLENGES

At the outset, the lack of performance evaluation train-
ing might seem like an easy problem to fix. All that needs
to be done is to create the appropriate course and decree
that it should be taken by all students. However, it is a
bit more complicated to operationalize this idea for several
reasons. One key reason is that past curriculum standardiza-
tion efforts do not explicitly include performance evaluation
as mandatory material in their recommendations. For exam-
ple, the IEEE/ACM reference curriculum [4] mentions per-
formance adjacent topics such as software quality but does
not explicitly emphasize topics such as performance model-
ing and measurement. This silence has the unintended con-
sequence of making performance evaluation and engineering
sound like a niche field thereby complicating their inclusion
in undergrad programs.

Another issue that complicates curriculum design is that
in some jurisdictions such as Canada engineering degrees,
including software engineering degrees, must be accredited
by an external body. In the case of Canada, this is the
Canadian Engineering Accreditation Board (CEAB). The
CEAB, for example, requires engineers to have depth in
their own domain but also breadth in subjects such as math,
physics, other engineering disciplines (e.g., thermodynamics,
and statics), and complementary topics (e.g., role of engi-
neers in society). While the pursuit of breadth and linkages
to other engineering disciplines is laudable, in practice, such
requirements make it very hard to carve out space for courses
that focus on topics such as performance evaluation.

To illustrate this, software engineering students at my uni-



versity only take one programming course in year 1! Year 2
has a 50-50 split between software (e.g., Java programming)
and non-software (e.g., optics and digital circuits) courses.
Consequently, students arrive in year 3 with a lot of ground
to cover in core software engineering (e.g., software design)
and computer science (e.g., operating systems) courses. In
the final year, students are required to take a project man-
agement course, complete a design project, and choose from
a list of elective courses that provide them an opportunity
to pursue specific interests.

Thus, a curriculum designer faces the difficult choice
of balancing between depth in software engineering and
breadth in other topics. In essence, there are only a lim-
ited number of slots available for core software engineering
and computer science courses and these are typically filled
with topics recommended in standard curriculums.

Finally, a crucial issue that needs to be addressed is stu-
dent buy-in for a course in performance evaluation. I have
been an undergrad curriculum administrator for a decade,
and I get to speak to students regularly. Most of them are
anxious to make up for the time they have spent taking non-
software courses. They prefer courses that will land them
their dream jobs. Not surprisingly, courses on data science
and game development, not performance evaluation, domi-
nate their thinking. When I offered performance evaluation
as an optional course for the first time several years ago,
student feedback was overall lukewarm. They felt it was a
very niche course and that it was ”grad” material. They
were somewhat put off by even the modest level math in the
course. Somewhat disturbingly, they felt that the material
was not relevant to them and that they do not see the course
knowledge being useful to them as practicing software engi-
neers.

Much to my satisfaction, a course in performance evalua-
tion was made mandatory in the software engineering pro-
gram at my university. My focus in the rest of the paper
is the key strategies I used to foster student interest while
teaching this course. Specifically, these strategies strive to
convince students that performance evaluation is a critical
topic that is going to be useful to them in industry. They
seek to emphasize practical skills that students can use in
their industrial practice.

3. COURSE CONTENTS
The course I teach is organized as follows. I start by

motivating the importance of performance using several in-
dustrial case studies. Then, to coax students to come out
of a functional mindset to a performance mindset, I review
some of the previous courses they have taken with a perfor-
mance lens. For example, I consider computer architecture
and discuss how things such as cache hierarchy, processor,
and memory organization impact performance. I talk about
multi-core architectures and the importance of software level
parallelism to take advantage of hardware parallelism. I dis-
cuss operating system level issues such as concurrency, syn-
chronization, and threading models and how they impact
performance.

Next, I switch to describing the software engineering life-
cycle and how performance analysis fits there. I introduce
different performance evaluation techniques such as analy-
sis, simulation, and measurements and discuss how these
techniques differ and complement each other. The rest of
the course focuses on two main aspects namely, modeling

and measurements. In modeling, I teach operational anal-
ysis and product form models. I also introduce some ad-
vanced modeling techniques, mainly Mean Value Analysis
(MVA) extensions to study queuing for software resources.
The final module emphasizes measurement concepts such
as workload modeling, load testing, and performance mon-
itoring. I also introduce experiment design and associated
statistical analyses.

4. STUDENT ENGAGEMENT STRATEGIES
On reflection, the main strategy I used is to explicitly mo-

tivate performance analysis and its importance to a practic-
ing software engineer. A particularly effective technique to
obtain student buy-in is to narrate case studies or situations
that I have encountered either in industry or in my industry-
oriented research projects. One of the case studies I narrate
early in the course was one I was personally involved in
while I was at HP Labs. This was a study where there was
a production Web site operated by a Fortune 100 company.
The Web site had horrendous performance problems such
as low throughput and high page load times. Initially, the
Web site’s engineers tried to throw hardware at the prob-
lem. They increased the system’s horizontal scaling but to
no avail. While space constraints preclude me from going
into the details, at a high level, the problem occurred due
to one method that had a very long critical section. When
the method was modified to have a shorter critical section,
the performance problems disappeared.

I use this case study to drive home several important
points to students. First, performance problems are real,
and they can have serious economic implications if left
unchecked. Second, I emphasize that just conducting func-
tional testing is not sufficient. The offending method in this
case passed functional tests but scaled very poorly and this
was not caught prior to deployment due to inadequate per-
formance testing. Finally, throwing hardware at the system
will not fix many performance problems. In this scenario,
the system was suffering from a software bottleneck. This
motivates the need to design systems that do not have such
insidious performance problems.

The next strategy I used is to complement narration of
case studies with active learning to promote student engage-
ment. Specifically, I describe a certain performance problem
and ask students to solve it in groups during the classroom.
For example, one of these sessions is based on a paper we
published on the scalability of a multi-core web server [2].
This exercise occurs during the part of the course where I es-
tablish linkages with computer architecture. In this session,
I give groups snippets of information such as the architecture
of the server we used, the concept of multiple sockets, mul-
tiple cores, local memory access, and socket inter-connect
bottlenecks. I then tell them that we installed an Apache
Web server on the system and noticed that the through-
put scaled linearly with cores when only cores from a single
socket were used. However, sublinear scaling was noticed
when cores from both sockets were allocated to the appli-
cation. Students are asked to brainstorm the source of the
bottleneck and techniques to mitigate it. Students typically
ask a lot of follow up questions but are in general able to
figure things out, which in this case relates to poor operat-
ing system scheduling decisions that trigger a socket inter-
connect bottleneck. Many groups correctly suggested that
running two Web server replicas with each replica pinned to



its own dedicated socket might mitigate this problem.
This exercise promotes student engagement with perfor-

mance evaluation in many ways. For example, it shows that
performance evaluation and debugging can be fun since it
resembles forensics. Furthermore, it reinforces the real-life
importance of performance analysis by highlighting the fact
that even production grade software (Apache) can have poor
scalability. Finally, it reiterates that throwing hardware (in
this case cores) at a system may not be effective in solv-
ing all performance problems. Careful design of software
components such as operating system schedulers combined
with thoughtful application configuration is crucial for fully
leveraging hardware level parallelism.

I also consciously prioritized applications over theory
given the overall objective of establishing industrial rele-
vance. Specifically, for the modeling part, I decided to
cover techniques that are mathematically simple yet have
good practical applications. So, operational laws and prod-
uct form models are the main modeling topics I cover in
the course. This is probably not an ideal choice. For exam-
ple, product form models have obvious limitations, which
might limit their applications in many real-world contexts.
However, I decided to trade off mathematical sophistication
for student buy-in and motivation. In keeping with this
strategy, the course focus is always on coming up with or
building a proper model for a given scenario rather than the
mechanics of solving the model. I allow students to use for-
mulae cheat sheets during exams and solvers for projects.
The emphasis is not on solving the model but rather on
coming up with the model. I also noticed that the wording
of assignment and exam problems can influence student en-
gagement. Problems should be worded to have a practical
flavour so that they come across as plausible scenarios that
could happen in practice.

The final strategy I emphasize is the building of strong
linkages between the lab and lecture components. While I
give students the freedom to propose their own performance
evaluation project, I introduce activities that force them to
apply concepts covered in lecture. For example, consider
a project that involves load testing. Students are required
to provide a rationale for the synthetic workloads selected.
They are directed to use operational laws to ensure that the
load test environment has been setup properly, e.g., verify
that measurements of the number of concurrent users, re-
sponse time, and throughput follow Little’s law. Students
are given exercises that show how operational laws can be
used to derive performance model parameters such as re-
source demands. Students are encouraged to build a model
of the system using the derived parameters and explore how
the model can be used to answer various “what-if” perfor-
mance questions. Students find this portion of the course
enjoyable due to its hands-on nature. The key idea is to in-
troduce activities within the project that demonstrate how
modeling approaches can complement measurement exer-
cises.

5. CONCLUDING REMARKS
While student feedback suggests that the strategies out-

lined here are effective, there remain several challenges that
need to be addressed. For example, in my opinion, the way
software engineering programs are typically structured leads
to siloed teaching efforts. Specifically, many programs have
standalone courses on requirements elicitation, design, ar-

chitecture, coding, functional testing, and performance anal-
ysis with no link to one another. Since all these activities are
inter-related, there is a need for more integrated teaching ef-
forts. For example, requirements gathering should include
performance requirements. Design should include building
models from design to see if the designs are likely to meet
performance requirements. Testing courses should also in-
troduce load testing to discuss aspects such as concurrency
and scalability.

There are other aspects that need a thoughtful discussion
in the SIGMETRICS community. For example, given the
prevalence of machine learning based performance models
in industry, how should queuing theory be introduced and
taught to undergrad students? How much emphasis should
be placed on theory given many students are intimidated by
the rigorous math involved in classical performance analy-
sis?
6. REFERENCES
[1] C. Brooks. Documents show healthcare.gov couldn’t

handle 500 users before launch, Nov 2013.
[2] R. Hashemian, D. Krishnamurthy, M. Arlitt, and

N. Carlsson. Characterizing the scalability of a web
application on a multi�core server. Concurrency and
Computation: Practice and Experience,
26(12):2027–2052, 2014.

[3] N. Statt. Amazon’s website crashed as soon as prime
day began, Jul 2018.

[4] The Joint Task Force on Computing Curricula.
Curriculum guidelines for undergraduate degree
programs in software engineering. Technical report,
New York, NY, USA, 2015.

[5] U.S. Bureau of Labor Statistics. Software developers,
quality assurance analysts, and testers, Feb 2023.


