p—— A"

Teaching a Mandatory Performance Evaluation Course to
Software Engineering Undergrads

Diwakar Krishnamurthy
Department of Electrical & Software Engineering
(dkrishna@ucalgary.ca)

) UNIVERSITY OF

&) CALGARY

'—

Overview

* Importance of performance evaluation (PE) for undergrad software engineers

* Challenges in teaching PE at undergrad level
* Reflections from teaching a mandatory undergrad PE course
* Strategies to improve student buy-in

* Open challenges

Why does performance matter?

Ewitter;

Canada’'s 'enthusiasm'’ for census brings down o .
witier Is over capacity.

StatsCan website “
& | * <%
f (v =~ (&)(in &
¥

#Census2016 trends across the country one week before Census Day &

John Bowman - CBC News - Posted: May 03, 2016 7:39 AM MDT | Last Updated: May 4, 2016

TEcH dd b b b B
Internal docu ments show how HEALTHCARE & PHARMA NOVEMBER 21, 2013 / 7:55 PM / UPDATED 10 YEARS AGO

Amazon scrambled to fix Prime Day

glitches Days before launch, Obamacare website failed to

handle even 500 users
@ S, f

By Roberta Rampton 5 MIN READ

KEY ® Amazon wasn't able to handle the traffic surge and failed to secure enough servers

POINTS to meet the demand on Prime Day, according to expert review of internal documents WASHINGTON (RGUtQYS) -In the last days before the botched OCtObGI’ 1 launch Of
obtained by CNBC.
President Barack Obama’s healthcare website, the team in charge was seeing
alarming results from performance tests, according to internal emails released by

Republican lawmakers investigating the rollout.

* Ignoring performance concerns has real-world implications

Why does performance matter?

* Organizations need engineers with PE skills

* Organizations predominantly hire undergrads as software engineers

* Undergrads don’t typically take PE courses

* Performance training is left to chance!

Summary
Quick Facts: Software Developers, Quality Assurance Analysts, and Testers
2021 Median Pay 0 zigigioefi;ﬁar
Typical Entry-Level Education 0 Bachelor's degree
Work Experience in a Related Occupation 0 None SOU Fce. US bu reau Of |abOI’ StatS
On-the-job Training 0 None
Number of Jobs, 2021 & 1,622,200
Job Outlook, 2021-31 0 25% (Much faster than average)
Employment Change, 2021-31 0 411,400

Why is it hard to get curriculum real estate?

®* ”"Standard” curricula silent on PE

* ACM/IEEE standard includes
"software quality”

* No explicit mention of topics such
as performance modeling

SEC (20) QUA (10)
[1

V&V (3#01(5
" 1V
K

MAA (28)

2

CMP (152)==aad FND (80)

PRF (29)

Module key:

CMP—Computing essentials

FND—Mathematical & engineering
fundamentals

PRF—Professional practice

MAA—Software modeling & analysis

REQ—Requirements analysis & specification

DES—Software design

VAV—Software verification & validation

PRO—Software process

QUA—Software quality

SEC—Security

Figures in brackets indicate a topic’s
presentation hours (or lecture hours).

'—

Why is it hard to get curriculum real estate?

* In some jurisdictions, engineering degrees need to be accredited
* E.g., Canadian Engineering Accreditation Board (CEAB) in Canada
* Stipulates depth in software engineering

* BUT, also breadth — math, natural sciences, other engineering, professional
practice

* Makes curriculum real estate scarce!

U Calgary Curriculum

First Year

Fall

Winter

Mathematics 275 or Applied Mathematics 217 | Mathematics 277

or Applied Mathematics 219

Engineering 200

Engineering 202

Engineering, 233

Engineering 225

Mathema;%:s 211

Physics 259

/

Chemistry 209

one programming

COUlSE: Engineering 201

Complementary Studies Course (3 units)

Second Year

Fall

Winter

Mathematics 375 or Applied Mathema

tics 307 | Computer Science 319 -

— Data structures

Intro C/C++\

Computer Engineering 339

Computer Engineering 369 —

Electrical Engineering 353

Electrical Engineering 327

~Comp organization

Engineering 319

Software Engineering for Engineers 409+

—Object orientation

Physics 365 or 369

Mathematics 271

Complementary Studies Course (3 units)

Thivwed VaAam

U Calgary Curriculum

Third Year
. . | Fall Winter
Comp Int_erfaCIr]g’Computer Engineering 511 Software Engineering 401 ArChiteCtU re
DeSIQn Software Engineering for Engineers 480 Software Engineering 438 TeSting
Software Engineering 471 .
Computer Science 441 ReqUIrementS
Computer Science 457 Networks
Computer Science 471 Operating Systems
Two Complementary Studies Courses (6 units) DatabaSGS
Fourth Year
Fall Winter
Processes Software Engineering 511 Software Engineering 533 Y~

Electrical Engineering 500 (6 units)?!

T~

Five Software Engineering Technical Electives (15 units)

—~ Performance!

Engineering 513

Complementary Studies Course (3 units)

What do students want?

L e awan Performance LN Y \Y

PPN B

* Make up for “irrelevant” breadth courses = ==
* Not particular fans of math!
* Popular opinion on performance analysis

* “Not relevant to me”

* “Too much theory — more grad material!”

* Performance equals throwing latest hardware at systems

* How do we overcome this challenge?

'—

SENG 533: Software Performance Evaluation

Course outline

* Motivation

* Performance oriented review of computer systems

* Software performance evaluation lifecycle

* Techniques — Modeling and Measurement
* Operational laws, MVA, a bit of advanced modeling (LQMs)
* Load testing

* Experiment design and analysis

* What are some key strategies to foster student buy in?

10

'—

Strategy 1: Establish linkages to real world

* Repeated use of appropriate industry/research case studies

* Example: Fortune 100 company’s retail Web site (discussed in week 1)
* Poor throughput - slow page loads

* Throwing hardware at the solution did not work

* Step 1: Outline the system and ask students to brainstorm

* Step 2: Explain the root cause of problem and the fix

11

Strategy 1: Establish linkages to real world

* Root cause: software bottleneck due to a long critical section

12

'—

Strategy 1: Establish linkages to real world

* Take home lessons of example
* Performance problems can have real implications
* Functional testing alone is not enough!

* Can’t just throw hardware at problems

13

-

Strategy 2: Active learning

* Brainstorm realistic performance problems in group

* Example: Diagnosing scalability problems in a multi-core Web server
(Hashemian et al., ICPE 2013)

Socket 0 Socket 1
OOOO| KOOG)
[][][] gy [][t][][§
L2 L2 L2 L2 L2 L2 L2 L2 g
<
L3 L3 g
—~
o
Z

Memory Memory

Bank 0 Bank 1

Number of active cores

Figure 1: Server Architecture

Why does the throughput scaling degrade beyond 4 cores?

14

'—

Strategy 2: Active learning
* Root cause: Context switching behaviour/cold cache/interconnect bottleneck
* Fix: Two web server replicas — each affined to their own socket
* Take home lessons of example
* Performance analysis is fun — similar to detective work
* Even production grade software (Apache) can have scalability problems

* Throwing hardware (cores) at a system is not enough.

15

'—

Strategy 3: Prioritizing application over theory
* Focused on how to build models as opposed to how to solve them
* How to represent a given scenario with a model?
* What type of model is appropriate for a situation? (E.g., closed vs open)
* What are model assumptions? Are they likely to be valid?
* Allow formula/cheat sheet!

* Trade mathematical sophistication for student buy In

16

Strategy 3: Prioritizing application over theory

 Wording problems to emphasize application/model building

Emphasis on model solution

Consider a 2 class system. The first class is interactive with 20 customers each having an
average think time of 30 seconds. The CPU and network demands of the class are

0.15 secs and 0.95 secs, respectively. The second class is batch having 10 customers.

The CPU and network demand of this class are 1 sec and 0.08 sec, respectively. Calculate the
response time of the interactive class.

Emphasis on model building

A cloud provider is exploring the option of consolidating two applications from two

different cloud subscribers on to a physical machine having a single CPU core. The first
application is a short movie clip service with 20 customers each having an average think

time of 30 seconds. On average, the transfer of a movie clip demands 0.15 secs from the CPU
and 0.95 secs from the network. The second application is a scientific computing batch
program. There are 10 instances of this program running concurrently. The program places a
demand of 1 secs on the CPU and 0.08 seconds on the network. The subscriber owning the first
application stipulates that the mean response time per clip should not exceed 2 secs. Is
consolidating these 2 apps a good idea?

s'—

trategy 4. Linking labs with lectures

* Simulate performance engineering practice with a 13-week project
* Show how to use analytic models in the process
* Example — Performance analysis of a microservice system
* Synthesize workloads - integrate with a load generator
* Validate load generator — e.g., is X = N/(R+Z) ?
* Obtain service utilizations - calculate demands using utilization law
* Build a LQM using estimated demands and service dependencies
* Validate model predictions — discuss how assumptions impact predictions

* Use model to conduct “what-if” analyses, e.g., impact of different scaling strategies

18

o'—

pen challenges

* Course has been generally well received
* However, several open challenges remain
* Challenge 1: Not ideal to teach PE in a silo
* Need integration with other aspects of software engineering
* Demands team teaching type effort
* Challenge 2: How do we teach advanced models without scaring students?

* Challenge 3: Is teaching queuing theory irrelevant given rise of ML/Al models?

19

Thank you!

20

