

Teaching Performance Modeling via Software and Instructional Technology

Cathy H. Xia Integrated Systems Engineering The Ohio State University

TeaPACS2021

November 12, 2021

Joint work with Nanshan Chen, Priya Natarajan

Outline

- PM Courses at OSU
- Instructional Technology in Lectures
- Teaching PM Software in Lab (Priya and Nanshan)

Performance Modeling (PM) Education

- PM education is part of the curriculum of many CS/OR Depts around the world
 - A comprehensive survey on PM courses last decade: de Nitto (WEPPE 2017)
 - Lessons on teaching analytical PM: Tay (ICPE 2019)
- New challenges for teaching PM today
 - Incorporate new topics: AI/ML, Big Data, Cyber physical systems, Information/Economic/Health crisis
 - Embrace the proliferation of digital technologies in teaching/learning

Performance Modeling Courses at OSU

- Undergraduate PM course:
 - ISE4100: Stochastic Modeling and Simulation
 - 4 credit units

- Graduate PM courses
 - ISE6300: Simulation for System Analytics and Decision-Making
 - ISE7300: Stochastic Processes
 - Both 3 credit units

Course Objectives (Undergraduate course)

Expected Learning Outcomes

- understand the roles of PM and simulation play in improving existing systems and building new ones
- learn how to model uncertainty in real-world systems
- learn the basics of M/M/c queues and and know the benefits of queueing theory
- know how to implement simulations in both EXCEL and ARENA and offer solutions to customers.
- know how to apply simulation output analysis to get insights over many alternative solutions.
- complete a **projec**t: use simulation to analyze a system, competently apply model building, analysis, explore alternatives and make better decisions

Classroom Technologies for Teaching PM

- Live Demo
- In-class Polling
- Kahoot! Games

Live Demo in Teaching PM

Live demo can be powerful in teaching PM

- uncertainty modeling, Monte Carlo simulation via spreadsheets
- queueing concepts, performance modeling, and discrete-event simulation via software (Arena)

Live Demo via Spreadsheets Simulation

- **Spreadsheet simulation**: using spreadsheets to build simulation models, perform simulation live, and report results.
- Example 1: Help Rupert Sell Newspaper Rupert is going to get into the newspaper business. Each newspaper sells for \$1, and costs him \$0.80.
 Demand for the newspapers is uncertain, but he believes that it is reasonable to model demand as being Uniformly distributed from 1500 to 2500.

Question: How many newspapers should he buy?

Common Pitfall: planning via average

- The average demand for newspapers is 2000.
- Suppose Rupert plans for the average case and buy 2000 newspapers
- You might expect his profit as follows:

Quantity to order			2000
Price buy	\$	0.80	
Investment	\$	1,600	
Expected Demand	¢	1 00	2000
Sales	φ	1.00	2000
Revenue	\$	2,000	
Profit	\$	400	

<u>Question</u>: Is \$400 a reasonable estimate of the profit we might expect?

Let's Help Rupert Simulate

Generate Random Demand:

- Trial by Random Draw on input D~ DiscreteUniform(1500,2500),
- Collect the corresponding profit

➤ P = 1*min(D, 2000) - 0.8*2000

Spreadsheet Simulation: Help Rupert sell Newspaper

Order Quantity: 2000		Order Price: \$0.80			
Dema	nd ~ U(1500, 2500)	Sale Price: \$1.0	00		
Run	Demand (input RV)	Sales	Revenue	Profit (Output RV)	
	=RANDBETWEEN(1500,2500)	=MIN(B6,2000)	=C6*1	=D6-2000*0.8	
1	1560	1560	\$1,560	-\$40	
2	2264	2000	\$2,000	\$400	
3	2214	2000	\$2,000	\$400	

Let's Help Rupert Simulate (cont)

Repeat many trials, & conduct statistical analysis on

outputs <u>Experiment:</u> Simulate 100 days of demand/sales

<u>Input RV:</u> D ~U(1500,2500)

<u>Output RV:</u> P = min{D,2000}*\$1 – 2000*\$0.8

Output Analysis: mean profit = \$283sample stdev = 158 95% CI = (\$252, \$314)

1	A	В	С	D	E	F	G	
1	Spreadsh	eet Simulation: Help Ru	pert sell Nev	vspaper				
2	Order	Quantity: 2000	26					
3	Demand ~ U(1500, 2500) Sale Price: \$1.00							
4	Run	Demand (input RV)	Sales	Revenue	Profit (Output RV)	Gener Sa	rate New mple	
6		=RANDBETWEEN(1500,2500)	=MIN(B6,2000)	=C6*1	=D6-2000*0.8			
7	1	2333	2000	\$2,000	\$400		0	
8	2	2206	2000	\$2,000	\$400			
9	3	2373	2000	\$2,000	\$400			
106	100	1995	1995	\$1,995	\$395			
107	Expected	Demand		2000	28			
108	(Profit bas	ed on Expected Demand)		\$400.00				
109	Sample N	lean Demand		2018	=AVERAGE(B7:B)	106)		
110	110 (Profit based on Sample Mean Demand)			\$400.00	=MIN(D109,200	0)-2000*0.	8	
111	Sample N	Aean Profit		\$282.62	=AVERAGE(E7:E1	06)		
112	12 Profit Sample Std Dev			\$157.80	=STDEV.S(E7:E106)			
113	13 95% C.I. for Mean Profit \$251.69			\$313.55	=D111 ± CONFIL	DENCE.NORI	M(0.05,D112,100	
114 115		Daily	y Profit (\$)					
116	\$400							
117								
118	\$300			•				
119	\$200							
120	\$100	•		•	1.5			
121		* * . * *			•			
122	50	200 00	•		100	e.		
100	-\$100	20- 40	БU	• 81	• 100			

Live Demo via Spreadsheets

- Random number generation is easy
 - "Live" function every time any cell changes in the worksheet, a new sample is produced
- Random draws from various *distributions*, collects corresponding (random) outputs instantly
- Monte Carlo does not yield "the right answer"!
 - Produces a collection of output results and involves statistical estimation for the metric of interest
 - All estimates (mean, stdev, C.I.) are random variables
 - <u>Central Limit Theorem</u>: convergence when many random draws simulated

Live Demo of Queueing Systems (via Simulation Software)

Evolution of an M/M/1 queue

Benefits of Live Demo

- view the technology-supported practices "in action", helps students to engage and take a more active role in learning
- allow the instructor to direct attention to the most important features (e.g., by demo in slow motion)
- empower the students to "think on the spot" and identify useful strategies to improve the system performance

In-Class Polling

- Can be conducted effectively via classroom technology
 - Instructor pose a question to the class
 - Students respond simply a click away
 - Students' responses and statistics tabulated and displayed instantly
- Benefits
 - Engage students and broaden participation
 - Anonymity makes students more comfortable to participate
 - Instant feedback makes the learning more effective
 - Instant feedback enables instructor a quick assessment

Teaching Little's Law via Polling

 <u>Example 2</u>: Arrivals to a self-service gasoline pump occur at rate 12 per hour. Each car spends on average 6 minutes in the system. What is the expected number of cars in the system?

In-class Polling scenarios:

- Conduct an initial poll, asking the students to use their common sense to answer the question
- Open discussions, have students explain their reasons
- Teach Little's Law, present a systematic way to derive solution
- Conduct another in-class exercise using polling

Kahoot! Games

- Gamification: one of the most effective teaching method
 - Create a more enjoyable and engaging learning experience (Vlachopoulos and Makri 2017)
- Kahoot! Games: a popular game-based learning platform
 - 70 million active users monthly (Wang and Tahir 2020)
 - Instructor create a quiz and have users play/compete in a gamified setting
 - Anonymity option allows a quick review of students' knowledge
 - Can be used for formative assessment or as a break from traditional classroom activities
 - Fast and efficient grading
 - More engaging and fun than standard test on paper

Kahoot! Games

Example 3: Teaching Poisson Processes via Kahoot!

- Knowledge point:
 - "Inter-arrival times of a Poisson process with rate I are i.i.d. exponentially distributed random variables with mean 1/I".
- Focus on important concepts and common pitfalls

Tips on Question Design

- Must carefully think through the learning goals, questions, and answers (Graham, 2015)
- Tips to design high-quality multiple-choice quiz questions (Terada 2018)
 - Don't list too many answers;
 - > Avoid trick questions;
 - Use simple question formats;
 - > Make it challenging, but not too difficult; and
 - ≻ Follow up with feedback.

Let's Kahoot!

Scan the QR code below or type <u>https://kahoot.it</u> into your browser to play Kahoot!

Link to game

Lab Sessions

- Covers the use of PM software Arena Simulation, by Rockwell Automation and companion tools
 - Arena Input Analyzer
 - Arena Output Analyzer
 - Arena Process Analyzer
- Lab is conducted by TA's
 - ISE 4100 (undergrad): Priya Natarajan
 - ISE 6300 (grad): Nanshan Chen

Current Lab Structure

- Lab sessions are 1 hour per week
 - Review statistical concepts
 - Cover the software basics
 - Provide help with homework / exam review
- Software is taught via follow-along-demonstration, homework lab assignments, lab-related questions on exams
- Troubleshooting is performed live and serves as an additional teaching method
- Videos of key concepts are recorded, typically 10 20 minutes in length.

Remote Lab Structure

- Students express challenges following along with live demonstrations due to limited monitor space
- Demonstrations are prerecorded, students watch on their own time and can pause when needed
- Scheduled lab time is reserved for guided peer-to-peer learning
 - Students are selected at random to present their models regardless of completeness or correctness. No points deducted for incorrect models
 - Troubleshooting is performed live and serves as an additional teaching method

Insights & Best Lab Practices

- Fully remote learning not ideal for lab sessions
 - Difficult to view video conferencing and simulation software simultaneously
 - Students less likely to interrupt and ask questions
 - Instructor loses non-verbal feedback from students
- Possible for students can learn the software via demonstration on their own time
- In-person time is best reserved for troubleshooting and covering in-depth concepts
- Videos are best helpful when shorter and cover fewer concepts
- Accountability via randomized student presentation of modeling helps students learn-through-teaching

Lab for Graduate PM Course (Nanshan)

- Lab is more than learning the operation of Arena.
- Applying knowledge learned in class.
- Ability to build model and understand the math/stat behind it is more important.
- Components of the lab
 - Review concepts and theories learned in class (slides)
 - Introduce the new aspects/features/approaches in Arena (screenshare)
 - Learn through examples: electronic assembly system, call center system, inventory system, etc. (screenshare)
 - ≻ Q & A
 - Lab will also be used as homework review before midterm/final

Concluding Remarks

- Technology is a good supplement for teaching PM
- Live demos can help teach important statistical concepts
- Kahoot! games are fun and more engaging
- Simulation software applies statistical concepts and clarifies the input-output transformation
- However, technology cannot completely replace traditional approaches
 - Key concepts & step-step reasoning best explained via lectures
 - Visual cues provide instant student-instructor feedback

Questions?

Little's Law

The Conservation Equation – Little's Law

Conservation equation (a.k.a. Little's law)

- $L = \lambda w$ as $T \to \infty$ and $N \to \infty$
- Holds for almost all queueing systems or subsystems (regardless of the number of servers, the queue discipline, or other special circumstances).
- G/G/1/N/K example (cont.): On average, one arrival every 4 time units and each arrival spends 4.6 time units in the system. Hence, at an arbitrary point in time, there is (1/4)(4.6) = 1.15 customers present on average.