The most common queueing
questions asked by
computer systems practitioners

Mor Harchol-Balter
Ziv Scully

Performance
. Modeling and\
Computer Science Dept. Design of

Computer

Carnegie Mellon University | | Systems

IIIIIIII

Question 1.

"My system utilization is low,

so why are job delays so high?"

Kingman's Approximation

A A

arrivals

FCFS queue

A: interarrival time S: job size (service time)

P

o c5 + C:
El|Del ~ -)
[Delay] =, (.) [S]

Empirical Job Size Distribution

UNIX jobs. [Harchol-Balter, Downey - SIGMETRICS 1996]

Pr{S > x}
109 j
107

10724 ,
109 10! 102

-

S =Job Size

S ~ BoundedPareto(a = 1)
Cé =50
Top 1% of jobs = 50% of load

X cpu hours

E[Delay] =

D c5 + C:
L (A55) ms

Empirical Job Size Distribution

Borg Scheduler at Google [Tirmazi et al., EUROSYS 2020]

Pr{S > x}
A
109 1

10711
10727

1073

10° 101 102 103

4

S =Job Size

S ~ BoundedPareto(a = 0.69)
Cé = 23,000
Top 1% of jobs = 99% of load

X cpu hours

2 2
P (CA er CS) - E[S]

Question 2:

"How can I lower job delay?”

3 solutions:
All based on lowering the effect of job size variability

Solution 1: Schedule to favor smalls

SRPT = Shortest Remaining Processing Time

@Ill\@—» :>I|I

SRPT SRPT

1)

At all times run the job with At all times run the 3 jobs with
shortest remaining time. shortest remaining times.

How much does scheduling matter?

Cé=1 Cé =100
Low variability High variability
Delay FCFS SRPT Delay FcFs sRPT
V'
}

load p load p

How much does scheduling matter?

But wait! Doesn't

.. 5
No. High variability
“"All Can Win Theorem"
[Bansal, Harchol-Balter,
Sigmetrics '01] Dekly FCFS SRPT

load p

Solution 2: Isolate smalls via SITA

— 99% of JObS

10

Solution 3: Pooling

[Pooled system has same utilization.

Jobs/sec

Jobs/sec

JObS/SZC

=
=
=
=

Jobs/sec

d but MUCH lower delay

O

4 =

jobs/sec

Q Pooling allows short jobs to
circumvent long ones.

1

Question 3:

“"How can I schedule better when I don't

know job size?"

12

Do NOT know
job size

9 KNOW job age
(tfime served
so far)

KNOW job size
distribution

Unknown job size

incoming jobs I:>

Pr{S = x}
0.04
0.03 Job size
002 distribution

0.01

13

Unknown job size

Pr{S = x}

' Processor-Sharing (PS)

allows shorts to complete
more quickly 14

Unknown job size

Pr{S = x}
E[Time] Gittins
| SERPT
30 T FCFS PS SRPT

E[Remaining Size | age]
1k

Shortest-Expected-Remaining-
- Processing-Time (SERPT)

U 1 1 T age

Gittins Index is true optimal
when job sizes not known. 15

Question 4:
"How to schedule jobs which differ in

size and value?”

16

Jobs differ in size & value

$$%$

| Eu

incoming jobs [> I

E

$$$ Holding cost of job = dollar cost for every hour
that this job is not done

I — Size of job = hours of work needed to get job done

Every hour, there's a "total holding cost” - summed cost over all jobs

GOAL: Minimize time-average total holding cost

17

$$%$

| Eu

incoming jobs [> I

E

$$$ Holding cost of job = dollar cost for every hour
that this job is not done

I — Size of job = hours of work needed to get job done

Schedule jobs

— : : Highest Index
Remaining size of job First.

Holding cost of job
Index(job) = J /]

18

Question b:

"How do answers change for closed-loop

system configurations?”

19

Closed versus Open Models

Open System Closed System
New job arrivals are exogenous to New job arrivals are triggered
the system by job completions

~~

20

Closed systems don't feel variability

Operate open system & closed system, both with the same avg. utilization

open
system

MPL=1000

MPL=100
- MPL=10

job size variability, C*

21

Conclusion

Q1: My system utilization is low, so why are my delays so high?

Q2: How can I lower job delay?

Q3: How can T schedule when I don't know job size?

Q4: How to schedule jobs with different values?

Q5: How do answers change for closed-loop system configurations?

22

Thank you!

23

