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Question 1.

"My system utilization is low,

so why are job delays so high?"




Kingman's Approximation
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Empirical Job Size Distribution

UNIX jobs. [Harchol-Balter, Downey - SIGMETRICS 1996]
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Empirical Job Size Distribution

Borg Scheduler at Google [Tirmazi et al., EUROSYS 2020]
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S =Job Size

S ~ BoundedPareto(a = 0.69)
Cé = 23,000
Top 1% of jobs = 99% of load

X cpu hours
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Question 2:

"How can I lower job delay?”

3 solutions:
All based on lowering the effect of job size variability




Solution 1: Schedule to favor smalls

SRPT = Shortest Remaining Processing Time
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At all times run the job with At all times run the 3 jobs with
shortest remaining time. shortest remaining times.



How much does scheduling matter?
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How much does scheduling matter?

But wait! Doesn't

.. 5
No. High variability
“"All Can Win Theorem"
[Bansal, Harchol-Balter,
Sigmetrics '01] Dekly FCFS SRPT
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Solution 2: Isolate smalls via SITA

— 99% of JObS
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Solution 3: Pooling

[ Pooled system has same utilization.
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Q Pooling allows short jobs to
circumvent long ones.
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Question 3:

“"How can I schedule better when I don't

know job size?"
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Do NOT know
job size

9 KNOW job age
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Unknown job size

Pr{S = x}

' Processor-Sharing (PS)

allows shorts to complete
more quickly 14



Unknown job size

Pr{S = x}
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Gittins Index is true optimal
when job sizes not known. 15



Question 4:
"How to schedule jobs which differ in

size and value?”
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Jobs differ in size & value

$$%$

| Eu

incoming jobs [ > I

E

$$$ Holding cost of job = dollar cost for every hour
that this job is not done

I — Size of job = hours of work needed to get job done

Every hour, there's a "total holding cost” - summed cost over all jobs

GOAL: Minimize time-average total holding cost
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$$%$

| Eu

incoming jobs [ > I

E

$$$ Holding cost of job = dollar cost for every hour
that this job is not done

I — Size of job = hours of work needed to get job done

Schedule jobs

— : : Highest Index
Remaining size of job First.

Holding cost of job
Index(job) = J /]
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Question b:

"How do answers change for closed-loop

system configurations?”
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Closed versus Open Models

Open System Closed System
New job arrivals are exogenous to New job arrivals are triggered
the system by job completions

~~
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Closed systems don't feel variability

Operate open system & closed system, both with the same avg. utilization

open
system

MPL=1000

MPL=100
- MPL=10

job size variability, C*
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Conclusion

Q1: My system utilization is low, so why are my delays so high?

Q2: How can I lower job delay?

Q3: How can T schedule when I don't know job size?

Q4: How to schedule jobs with different values?

Q5: How do answers change for closed-loop system configurations?

22



Thank you!
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