The most common queueing questions asked by
 computer systems practitioners

Mor Harchol-Balter

Ziv Scully

Computer Science Dept. Carnegie Mellon University

Question 1:

"My system utilization is low, so why are job delays so high?"

Kingman's Approximation

A: interarrival time
S: job size (service time)

Empirical Job Size Distribution

UNIX jobs. [Harchol-Balter, Downey - SIGMETRICS 1996]

$$
\begin{aligned}
& \operatorname{Pr}\{S>x\} \\
& S=\text { Job Size } \\
& S \sim \text { BoundedPareto }(\alpha \approx 1) \\
& C_{S}^{2}=50 \\
& \text { Top } 1 \% \text { of jobs } \approx 50 \% \text { of load } \\
& \text { x сри hours }
\end{aligned}
$$

$$
E[\text { Delay }] \approx \frac{\rho}{1-\rho} \cdot\left(\frac{C_{A}^{2}+C_{S}^{2}}{2}\right) \cdot E[S]
$$

Empirical Job Size Distribution

Borg Scheduler at Google [Tirmazi et al., EUROSYS 2020]

$$
\begin{aligned}
& \operatorname{Pr}\{S>x\} \\
& \begin{array}{l}
\text { S = Job Size } \\
C_{S}^{2}=23,000
\end{array} \\
& \text { Top } 1 \% \text { of joundedPareto }(\alpha=0.69)
\end{aligned}
$$

$$
E[\text { Delay }] \approx \frac{\rho}{1-\rho} \cdot\left(\frac{C_{A}^{2}+C_{S}^{2}}{2}\right) \cdot E[S]
$$

Question 2: "How can I lower job delay?"

3 solutions:
All based on lowering the effect of job size variability

Solution 1: Schedule to favor smalls

SRPT = Shortest Remaining Processing Time

At all times run the job with shortest remaining time.

At all times run the 3 jobs with shortest remaining times.

How much does scheduling matter?

$$
C_{S}^{2}=1
$$

Low variability

$$
C_{S}^{2}=100
$$

High variability

How much does scheduling matter?

But wait! Doesn't SRPT starve big jobs?

No.
"All Can Win Theorem" [Bansal, Harchol-Balter, Sigmetrics '01]

Solution 2: Isolate smalls via SITA

Solution 3: Pooling

\square Pooled system has same utilization.
r but MUCH lower delay

Pooling allows short jobs to circumvent long ones.

Question 3:

"How can I schedule better when I don't know job size?"

Unknown job size

incoming jobs

(©) KNOW job age (time served so far)

KNOW job size distribution
$\operatorname{Pr}\{S=x\}$

Unknown job size

$$
\operatorname{Pr}\{S=x\}
$$

Processor-Sharing (PS)
allows shorts to complete more quickly

Unknown job size

$$
\operatorname{Pr}\{S=x\}
$$

$E[$ Remaining Size \mid age $]$

E[Time]

Shortest-Expected-Remaining-Processing-Time (SERPT)

Gittins Index is true optimal when job sizes not known.

Question 4:

"How to schedule jobs which differ in size and value?"

Jobs differ in size \& value

\$\$\$\$
incoming jobs

\$\$\$ Holding cost of job = dollar cost for every hour that this job is not done

Size of job = hours of work needed to get job done

Every hour, there's a "total holding cost" - summed cost over all jobs
GOAL: Minimize time-average total holding cost

ch-Rule

\$\$\$\$

incoming jobs

\$\$\$ Holding cost of job = dollar cost for every hour that this job is not done

Size of job $=$ hours of work needed to get job done

$$
\operatorname{Index}(j o b)=\frac{\text { Holding cost of job }}{\text { Remaining size of job }}
$$

Schedule jobs Highest Index First.

Question 5:

"How do answers change for closed-loop system configurations?"

Closed versus Open Models

Open System

New job arrivals are exogenous to the system

Closed System

New job arrivals are triggered by job completions

Closed systems don't feel variability

Operate open system \& closed system, both with the same avg. utilization

Conclusion

Q1: My system utilization is low, so why are my delays so high?

Q2: How can I lower job delay?

Q3: How can I schedule when I don'† know job size?

Q4: How to schedule jobs with different values?

Q5: How do answers change for closed-loop system configurations?

Thank you!

