The most common queueing questions asked by computer systems practitioners

Mor Harchol-Balter Ziv Scully

Computer Science Dept. Carnegie Mellon University

<u>Question 1</u>: "My system utilization is low, so why are job delays so high?"

Kingman's Approximation

A: interarrival time

S: job size (service time)

Empirical Job Size Distribution

UNIX jobs. [Harchol-Balter, Downey - SIGMETRICS 1996]

 $\underline{S = Job \ Size}$

 $S \sim BoundedPareto(\alpha \approx 1)$

 $C_{S}^{2} = 50$

Top 1% of jobs \approx 50% of load

 $E[Delay] \approx \frac{\rho}{1 - \rho} \cdot \left(\frac{C_A^2 + C_S^2}{2}\right) \cdot E[S]$

Empirical Job Size Distribution

Borg Scheduler at Google [Tirmazi et al., EUROSYS 2020]

S = Job Size

 $S \sim BoundedPareto(\alpha = 0.69)$

 $C_S^2 = 23,000$

Top 1% of jobs \approx 99% of load

$$E[Delay] \approx \frac{\rho}{1 - \rho} \cdot \left(\frac{C_A^2 + C_S^2}{2}\right) \cdot E[S]$$

<u>Question 2</u>: "How can I lower job delay?"

<u>3 solutions</u>: All based on lowering the effect of job size variability

Solution 1: Schedule to favor smalls

SRPT = Shortest Remaining Processing Time

At all times run the job with shortest remaining time.

At all times run the 3 jobs with shortest remaining times.

How much does scheduling matter?

Low variability

<u>High variability</u>

How much does scheduling matter?

But wait! Doesn't SRPT starve big jobs?

No. "All Can Win Theorem" [Bansal, Harchol-Balter, Sigmetrics '01]

<u>High variability</u>

Solution 2: Isolate smalls via SITA

Solution 3: Pooling

Pooled system has same utilization.

□ but MUCH lower delay

Pooling allows short jobs to circumvent long ones.

Question 3: "How can I schedule better when I don't know job size?"

Unknown job size

incoming jobs

KNOW job age (time served so far)

• KNOW job size distribution

Unknown job size

 $\Pr\{S = x\}$

Processor-Sharing (PS)

allows shorts to complete more quickly

Unknown job size

 $\Pr\{S = x\}$

E[Remaining Size | age]

Shortest-Expected-Remaining-Processing-Time (SERPT)

Gittins Index is true optimal when job sizes not known.

Question 4: "How to schedule jobs which differ in size and value?"

Jobs differ in size & value

\$\$\$ Holding cost of job = dollar cost for every hour that this job is not done

 Size of job = hours of work needed to get job done

Every hour, there's a "total holding cost" - summed cost over all jobs

<u>GOAL</u>: Minimize time-average total holding cost

cµ-Rule

\$\$\$ <u>Holding cost of job</u> = dollar cost for every hour that this job is not done
<u>Size of job</u> = hours of work needed to get job done

 $Index(job) = \frac{Holding \ cost \ of \ job}{Remaining \ size \ of \ job}$

Schedule jobs Highest Index First.

<u>Question 5</u>: "How do answers change for closed-loop system configurations?"

Closed versus Open Models

Open System

New job arrivals are exogenous to the system

<u>Closed</u> System

New job arrivals are triggered by job completions

Closed systems don't feel variability

Operate open system & closed system, both with the same avg. utilization

Conclusion

<u>Q1</u>: My system utilization is low, so why are my delays so high?

<u>Q2</u>: How can I lower job delay?

Q3: How can I schedule when I don't know job size?

Q4: How to schedule jobs with different values?

Q5: How do answers change for closed-loop system configurations?

Thank you!